|
Ta tìm nghiệm của (*) $ \begin{array}{l} (*) \Leftrightarrow \frac{{\sqrt 3 }}{2}\sin 7x - \frac{1}{2}c{\rm{os}}7x = \frac{{\sqrt 2 }}{2}\\ \,\,\,\,\,\,\, \Leftrightarrow \sin \left( {7x - \frac{\pi }{6}} \right) = \sin \frac{\pi }{4}\\ \,\,\,\,\,\,\, \Leftrightarrow \left[ \begin{array}{l} x = \frac{{5\pi }}{{84}} + \frac{{k2\pi }}{7}\\ x = \frac{{11\pi }}{{84}} + \frac{{k2\pi }}{7} \end{array} \right.;(k \in Z) \end{array} $ Tìm k là số nguyên sao cho nghiệm thỏa mãn giả thiết: Ta xét 2 trường hợp: $ \begin{array}{l} {\rm{TH}}1:\,\,\,x = \frac{{5\pi }}{{84}} + \frac{{k2\pi }}{7}\\ \Rightarrow \frac{{2\pi }}{5} < \frac{{5\pi }}{{84}} + \frac{{k2\pi }}{7} < \frac{{6\pi }}{7} \Leftrightarrow \frac{2}{5} - \frac{5}{{84}} < \frac{{2k}}{7} < \frac{6}{7} - \frac{5}{{84}}\\ \Leftrightarrow k = 2 \Leftrightarrow {x_1} = \frac{{53\pi }}{{84}} \end{array} $ $ \begin{array}{l} {\rm{TH2}}:\,\,\,x = \frac{{11\pi }}{{84}} + \frac{{k2\pi }}{7}\\ \Rightarrow \frac{{2\pi }}{5} < \frac{{11\pi }}{{84}} + \frac{{k2\pi }}{7} < \frac{{6\pi }}{7} \Leftrightarrow \frac{2}{5} - \frac{{11}}{{84}} < \frac{{2k}}{7} < \frac{6}{7} - \frac{{11}}{{84}}\\ \Leftrightarrow k = 1,2 \Leftrightarrow {x_2} = \frac{{35\pi }}{{84}};{x_3} = \frac{{59\pi }}{{84}} \end{array} $ Vậy nghiệm cần tìm là: $ {x_1} = \frac{{53\pi }}{{84}};\,\,{x_2} = \frac{{35\pi }}{{84}};\,\,{x_3} = \frac{{59\pi }}{{84}} $
|