|
$1)\,\,(1) \Leftrightarrow \,\,\,\left\{ \begin{array}{l} xy > 0\\ y \ne 0\\ xy = {2^5}\\ \frac{x}{y} = \frac{1}{2} \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\,\,\left\{ \begin{array}{l} y = 2x\\ 2{x^2} = {2^5} \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\,\left[ \begin{array}{l} \left\{ \begin{array}{l} x = 4\\ y = 8 \end{array} \right.\\ \left\{ \begin{array}{l} x = - 4\\ y = - 8 \end{array} \right. \end{array} \right.$
Vậy hệ phương trình có 2 nghiệm là ${(4;8);(-4;-8)}$
$2)\,\,(2)\,\,\, \Leftrightarrow \left\{ \begin{array}{l} x > 0,\,\,\,x \ne 1\\ y > 0\\ xy = 64\\ y = {x^5} \end{array} \right.$
$\Leftrightarrow$ $\left\{ \begin{array}{l} x^6 = 64\\ y = x^5\\ x>0 \end{array} \right.$ $\Leftrightarrow$ $\left\{ \begin{array}{l} x = 2\\ y = 32 \end{array} \right.$ Hệ phương trình có nghiệm duy nhất $(2;32)$
|