|
ĐK: $\left\{ \begin{array}{l} x > 0,\,\,y > 0\\ x \ne 1,\,\,y \ne 1 \end{array} \right.$ $\begin{array}{l} (1)\,\, \Leftrightarrow \,\,\left\{ \begin{array}{l} 3x + 2y = {x^2}\\ 2x + 3y = {y^2} \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\left\{ \begin{array}{l} 3x + 2y = {x^2}\\ x - y = {x^2} - {y^2} \end{array} \right.\\ \,\,\,\,\,\,\, \Leftrightarrow \,\,\,\left\{ \begin{array}{l} 3x + 2y = {x^2}\\ \left( {x - y} \right)\left( {x + y - 1} \right) = 0\,\,\, \end{array} \right.\,\,\,\,\,\, \Leftrightarrow \,\,\,\left[ \begin{array}{l} \left\{ \begin{array}{l} 3x + 2y = {x^2}\\ x - y = 0 \end{array} \right.\,\,\,\,\,\,\,\,\,(2)\\ \left\{ \begin{array}{l} 3x + 2y = {x^2}\\ x + y - 1 = 0 \end{array} \right.\,\,\,\,\,\,\,\,\,(3) \end{array} \right. \end{array}$ $\begin{array}{l} (2)\,\, \Leftrightarrow \,\left\{ \begin{array}{l} x = y\\ 5x = {x^2} \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\,\left\{ \begin{array}{l} x = y = 0\,\,\,\,\,\,(l)\\ x = y = 5 \end{array} \right.\\ \\ (3)\,\, \Leftrightarrow \left\{ \begin{array}{l} y = 1 - x\\ 3x + 2\left( {1 - x} \right) = {x^2} \end{array} \right.\,\,\,\,\, \Leftrightarrow \,\,\,\left[ \begin{array}{l} \left\{ \begin{array}{l} x = - 1\\ y = 2 \end{array} \right.\,\,\,\,\,\,\,\,\,(loại)\\ \left\{ \begin{array}{l} x = 2\\ y = - 1 \end{array} \right.\,\,\,\,\,\,\,\,\,(loại) \end{array} \right. \end{array}$
Vậy hệ phương trình có $1$ nghiệm duy nhất là $(5;\,5)$
|