|
$1)$ Điều kiện: $\left\{ \begin{array}{l} x > 0,\,\,y > 0\\ x y \ne 1 \end{array} \right.$ $(1)\,\, \Leftrightarrow \,\left\{ \begin{array}{l} \,x - y = xy\\ x + y = 1 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ \begin{array}{l} y = 1 - x\\ {x^2} + x - 1 = 0 \end{array} \right.$ $\,\,\,\,\,\,\, \Leftrightarrow \,\,\left[ \begin{array}{l} \left\{ \begin{array}{l} x = \frac{{ - 1 - \sqrt 5 }}{2} < 0\\ y = \frac{{3 + \sqrt 5 }}{2} > 0 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,(l)\\ \left\{ \begin{array}{l} x = \frac{{ - 1 + \sqrt 5 }}{2} > 0\\ y = \frac{{3 - \sqrt 5 }}{2} > 0 \end{array} \right. \end{array} \right.$ Hệ có $1$ nghiệm là :$\left\{ \begin{array}{l} x = \frac{{ - 1 + \sqrt 5 }}{2}\\ y = \frac{{3 - \sqrt 5 }}{2} \end{array} \right.$ $2)$ Điều kiện $x > 0$ Hệ phương trình đã cho tương đương với: $\left\{ \begin{array}{l} x = {4^{y - 1}}\\ {x^y} = 4096 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\,\left\{ \begin{array}{l} x = {4^{y - 1}}\\ {4^{y\left( {y - 1} \right)}} = {4^6} \end{array} \right.$ $ \Leftrightarrow \,\,\,\left\{ \begin{array}{l} x = {4^{y - 1}}\\ {y^2} - y - 6 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x= {4^{y - 1}}\\ y=3 \vee y=-2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x=16; y=3\\x=\frac 1{64}; y=-2 \end{array} \right.$ ĐS: $(16,\,3),\,\,\,\left( {\frac{1}{{64}},\, - 2} \right)$ $3)$ Điều kiện :$\left\{ \begin{array}{l} x > 0,\,\,x \ne 1\\ y > 0 \end{array} \right.$ Hệ phương trình đã cho tương đương với: $\left\{ \begin{array}{l} y=x^2\\ y+23=(x+1)^3 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} y = {x^2}\\ {x^3} + 2{x^2} + 3x - 22 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x=2\\ y=4 \end{array} \right.$ ĐS: $(2,\,4)$
|