|
${f^ / }(x) = a{.3^x}\ln 3.$ Giả thiết ${f^ / }\left( 0 \right) = 2$ $ \Leftrightarrow \,\,\,a\ln 3 = 2\,\,\, \Leftrightarrow \,\,\,a = \frac{2}{{\ln 3}}$ $\int\limits_{1}^{2} {\left( {a{{.3}^x} + b} \right)dx = 12\,\,\, \\\Leftrightarrow \,\,\left[ {{{a{{.3}^x}}}{} + bx} \right]}| _1^2 = 12\,\,\, \Leftrightarrow 6a+b=12\Leftrightarrow b = 12 - 6a=12-\frac{{12}}{{{{\ln }^2}3}}$
Vậy: $a = \frac{2}{{\ln 3}}\,\,,\,\,b = 12 - \frac{{12}}{{{{\ln }^2}3}}$
|