|
Đặt $f(x) = \left( {x + 1 - \frac{1}{x}} \right){e^{x + \frac{1}{x}}}$ $\begin{array}{l} t = x + \frac{1}{x}\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\,\mathop {{x^2} - tx + 1=0}\limits_{\frac{1}{2} \le x \le 2} \,\,\,\,\, \Leftrightarrow \,\,\,x = \left[ \begin{array}{l} \frac{{t - \sqrt {{t^2} - 4} }}{2} \le 1\\ \frac{{t + \sqrt {{t^2} - 4} }}{2} \ge 1 \end{array} \right.\\ x = \frac{1}{2}\,\,\,\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,t = \frac{5}{2}\\ x = 1\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,t = 2\\ x = 2\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,t = \frac{5}{2} \end{array}$ Suy ra: $dx = \left[ \begin{array}{l} \frac{1}{2}\left( {1 - \frac{t}{{\sqrt {{t^2} - 4} }}} \right)dt\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{1}{2} \le x \le 1\\ \frac{1}{2}\left( {1 + \frac{t}{{\sqrt {{t^2} - 4} }}} \right)dt\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1 \le x \le 2 \end{array} \right.$ Từ đó: $I = \int\limits_{\frac{1}{2}}^2 {f\left( x \right)dx} = \int\limits_{\frac{1}{2}}^1 {f\left( x \right)dx} + \int\limits_1^2 {f\left( x \right)dx} $ $\begin{array}{l} I = \frac{1}{2}\int\limits_{\frac{5}{2}}^2 {\left( {\frac{{t - \sqrt {{t^2} - 4} }}{2} + 1 - \frac{{t + \sqrt {{t^2} - 4} }}{2}} \right)} {e^t}.\left( {\frac{{\sqrt {{t^2} - 4} - t}}{{\sqrt {{t^2} - 4} }}} \right)dt - \\ \,\,\, - \frac{1}{2}\int\limits_{\frac{5}{2}}^2 {\left( {\frac{{t + \sqrt {{t^2} - 4} }}{2} + 1 - \frac{{t - \sqrt {{t^2} - 4} }}{2}} \right)} {e^t}.\left( {\frac{{\sqrt {{t^2} - 4} + t}}{{\sqrt {{t^2} - 4} }}} \right)dt\\ \,\,\,\, = - \frac{1}{2}\int\limits_2^{\frac{5}{2}} {\left( {1 - \sqrt {{t^2} - 4} } \right)} \left( {1 - \frac{t}{{\sqrt {{t^2} - 4} }}} \right){e^t}dt + \\ \,\,\,\,\, + \,\frac{1}{2}\int\limits_2^{\frac{5}{2}} {\left( {1 + \sqrt {{t^2} - 4} } \right)} \left( {1 + \frac{t}{{\sqrt {{t^2} - 4} }}} \right){e^t}dt \end{array}$ $I = \int\limits_2^{\frac{5}{2}} {\left( {\sqrt {{t^2} - 4} + \frac{t}{{\sqrt {{t^2} - 4} }}} \right){e^t}dt} = \int\limits_2^{\frac{5}{2}} {\sqrt {{t^2} - 4} {e^t}dt + } \int\limits_2^{\frac{5}{2}} {\frac{{t{e^t}}}{{\sqrt {{t^2} - 4} }}dt} $
Đặt $\,\,\,u = {e^{t\,\,\,\,}}\,\,\,\, \Rightarrow du = {e^t}dt$ $\,\,dv = \frac{t}{{\sqrt {{t^2} - 4} }}\,\,\,\, \Rightarrow v = \sqrt {{t^2} - 4} $ $\int\limits_2^{\frac{5}{2}} {2\frac{t}{{\sqrt {{t^2} - 4} }}} {e^t}dt = \left. {{e^t}\sqrt {{t^2} - 4} } \right|_2^{\frac{5}{2}} - \int\limits_2^{\frac{5}{2}} {\sqrt {{t^2} - 4} } {e^t}dt$ $1)\,\,\,I = \int\limits_0^{\ln 3} {\frac{{dx}}{{\sqrt {{e^x} + 1} }}} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2)\,\,\,J = \int\limits_0^2 {x{e^{ - \frac{x}{2}dx}}} $ $ \Rightarrow \,\,\,\int\limits_2^{\frac{5}{2}} {\sqrt {{t^2} - 4} } {e^t}dt + \int\limits_2^{\frac{5}{2}} {\frac{t}{{\sqrt {{t^2} - 4} }}} {e^t}dt = \frac{3}{2}{e^{\frac{5}{2}}}$ ĐS: $I = \frac{3}{2}{e^{\frac{5}{2}}}$
|