CMR nếu  $ABC$ thỏa mãn $1$ trong các điều kiện sau đây  thì nó là tam giác cân
$1/$ $(a - b + c)\cot \frac{C}{2} = (a + b + c)tan\frac{B}{2}$
$2/$ $a(\cot \frac{C}{2} - tanA) = b(tanB - \cot \frac{C}{2})$
$3/$ $a + b = tan\frac{C}{2}(atanA + btanB)$
$4/$ $tanA + tanB = 2\cot \frac{C}{2}$
$5/$ $\frac{1}{2}(tanA + tanB) = \frac{{\sin A + \sin B}}{{\cos A + \cos B}}$
$6/$ $\sin A\sin B = cos^2\frac{C}{2}$
$7/$ $\frac{{\sin A + \sin B + \sin C}}{{\sin A + \sin B - \sin C}} = \cot \frac{A}{2}\cot \frac{C}{2}$
$8/$ $\sin \frac{A}{2}cos^3\frac{B}{2} = \sin \frac{B}{2}cos^3\frac{A}{2}$
$9/$ $\sin \frac{A}{2} = \frac{a}{{2\sqrt {bc} }}$
$10/$ $tan\frac{A}{2} = \frac{a}{{\sqrt {(a + b + c)(b + c - a)} }}$
$11/$ $l_a^2 = \frac{{4bc - {a^2}}}{4}$
$12/$ ${a^2} + {b^2} = tan\frac{C}{2}({a^2}\tan A + b^2\tan B)$
$13/$ $h_a = \sqrt {p(p - a)} $
$1/$ ta có        $(a - b + c)\cot g\frac{C}{2} = (a + b + c)tg\frac{B}{2}$
      $ \Leftrightarrow (\sin A + \sin C - \sin B)\cot g\frac{C}{2} = (\sin A + \sin B + \sin C)tg\frac{B}{2}           (1)$
Áp dụng công thức qua các bước sau :
Trong tam giác $ABC$,ta có :
      $\left\{ \begin{array}{l}
\sin A + \sin B + \sin C = 4\cos \frac{A}{2}c{\rm{os}}\frac{B}{2}c{\rm{os}}\frac{C}{2}\\
\sin A + \sin C - \sin B = 4\cos \frac{B}{2}\sin \frac{A}{2}\sin \frac{C}{2}
\end{array} \right.$
Vì thế,($1$) tương đương     $c{\rm{os}}\frac{B}{2}\sin \frac{A}{2}\sin \frac{C}{2}\frac{{c{\rm{os}}\frac{C}{2}}}{{\sin \frac{C}{2}}} = c{\rm{os}}\frac{A}{2}c{\rm{os}}\frac{B}{2}c{\rm{os}}\frac{C}{2}\frac{{\sin \frac{B}{2}}}{{c{\rm{os}}\frac{B}{2}}}$
             $\begin{array}{l}
 \Leftrightarrow c{\rm{os}}\frac{B}{2}\sin \frac{A}{2}c{\rm{os}}\frac{C}{2} = c{\rm{os}}\frac{A}{2}c{\rm{os}}\frac{C}{2}\sin \frac{B}{2}\\
 \Leftrightarrow \sin \frac{A}{2}c{\rm{os}}\frac{B}{2} = \sin \frac{B}{2}c{\rm{os}}\frac{A}{2}(c{\rm{os}}\frac{C}{2} > 0)
\end{array}$
         $\begin{array}{l}
 \Leftrightarrow \sin \frac{{A - B}}{2} = 0\\
 \Leftrightarrow A = B
\end{array}$
Ta có $DPCM$
$2/$ ta có  :  $a(\cot g\frac{C}{2} - tgA) = b(tgB - \cot g\frac{C}{2})$
       $\begin{array}{l}
 \Leftrightarrow a(tg\frac{{A + B}}{2} - tgA) = b(tgB - tg\frac{{A + B}}{2})\\
 \Leftrightarrow \sin A\frac{{\sin (\frac{{A + B}}{2} - A)}}{{c{\rm{os}}\frac{{A + B}}{2}\cos A}} = \sin B\frac{{\sin (B - \frac{{A + B}}{2})}}{{\cos Bc{\rm{os}}\frac{{A + B}}{2}}}\\
 \Leftrightarrow \sin A\frac{{\sin \frac{{B - A}}{2}}}{{\cos A}} = \sin B\frac{{\sin \frac{{B - A}}{2}}}{{\cos B}}\\
 \Leftrightarrow \sin \frac{{B - A}}{2}(tgA - tgB) = 0\\
 \Leftrightarrow \left[ \begin{array}{l}
\sin \frac{{B - A}}{2} = 0\\
tgA = tgB
\end{array} \right. \Leftrightarrow A = B
\end{array}$
Ta có $DPCM$
$3/$     $a + b = tg\frac{C}{2}(atgA + btgB)$
     $\begin{array}{l}
 \Leftrightarrow (a + b)\cot g\frac{C}{2} = atgA + btgB\\
 \Leftrightarrow a(\cot g\frac{C}{2} - tgA) = b(tgB - \cot g\frac{C}{2})
\end{array}$
Vậy $3/$ chính là dạng tương đương của $2/$

$4/$  $tgA + tgB = 2\cot g\frac{C}{2} \Leftrightarrow \frac{{\sin (A + B)}}{{\cos A\cos B}} = 2\frac{{c{\rm{os}}\frac{C}{2}}}{{\sin \frac{C}{2}}}$
     $ \Leftrightarrow \frac{{2\sin \frac{C}{2}c{\rm{os}}\frac{C}{2}}}{{\cos A\cos B}} = 2\frac{{c{\rm{os}}\frac{C}{2}}}{{\sin \frac{C}{2}}}         (1)$
Do $c{\rm{os}}\frac{C}{2}\# 0$,nên ($1$) tương đương:  $2{\sin ^2}\frac{C}{2} = 2\cos A\cos B$
       $\begin{array}{l}
 \Leftrightarrow 1 - \cos C = c{\rm{os}}(A + B) + c{\rm{os}}(A - B)\\
 \Leftrightarrow 1 - \cos C =  - \cos C + c{\rm{os}}(A - B)\\
 \Leftrightarrow 1 = c{\rm{os}}(A - B)\\
 \Leftrightarrow A = B
\end{array}$
Ta có $DPCM$

$5/$    $\frac{1}{2}(tgA + tgB) = \frac{{\sin A + \sin B}}{{\cos A + \cos B}}$
    $\Leftrightarrow \frac{{\sin (A + B)}}{{2\cos A\cos B}} = \frac{{2\sin \frac{{A + B}}{2}c{\rm{os}}\frac{{A - B}}{2}}}{{2\cos \frac{{A + B}}{2}c{\rm{os}}\frac{{A - B}}{2}}}$
  $ \Leftrightarrow \frac{{2\sin \frac{{A + B}}{2}c{\rm{os}}\frac{{A + B}}{2}}}{{2\cos A\cos B}} = \frac{{\sin \frac{{A + B}}{2}}}{{c{\rm{os}}\frac{{A + B}}{2}}}                      (*)$
Do $\sin \frac{{A + B}}{2} = c{\rm{os}}\frac{C}{2}\# 0$,nên $(*)$ tương đương
         $2{\sin ^2}\frac{C}{2} = 2\cos A\cos B$
     $\begin{array}{l}
 \Leftrightarrow 1 - \cos C = c{\rm{os}}(A + B) + c{\rm{os}}(A - B)\\
 \Leftrightarrow 1 = c{\rm{os}}(A - B)\\
 \Leftrightarrow A = B
\end{array}$
Ta có $DPCM$
$6/$  $\sin A\sin B = c{\rm{o}}{{\rm{s}}^2}\frac{C}{2} \Leftrightarrow c{\rm{os}}(A - B) - c{\rm{os}}(A + B) = 1 + \cos C$
       $\begin{array}{l}
 \Leftrightarrow c{\rm{os}}(A - B) + \cos C = 1 + \cos C\\
 \Leftrightarrow c{\rm{os}}(A - B) = 1\\
 \Leftrightarrow A = B
\end{array}$
Ta có $ĐPCM$
$7/$ $\frac{{\sin A + \sin B + \sin C}}{{\sin A + \sin B - \sin C}} = \cot g\frac{A}{2}\cot g\frac{C}{2}$
Áp dụng các công thức đã biết
       $\begin{array}{l}
\sin A + \sin B + \sin C = 4\cos \frac{A}{2}c{\rm{os}}\frac{B}{2}c{\rm{os}}\frac{C}{2}\\
\sin A + \sin B - \sin C = 4\sin \frac{A}{2}\sin \frac{B}{2}c{\rm{os}}\frac{C}{2}
\end{array}$
Hệ thức đã cho tương đương
      $\frac{{4\cos \frac{A}{2}c{\rm{os}}\frac{B}{2}c{\rm{os}}\frac{C}{2}}}{{4\sin \frac{A}{2}\sin \frac{B}{2}c{\rm{os}}\frac{C}{2}}} = \cot g\frac{A}{2}\cot g\frac{C}{2}$
   $\begin{array}{l}
 \Leftrightarrow \cot g\frac{A}{2}\cot g\frac{B}{2} = \cot g\frac{A}{2}\cot g\frac{C}{2}\\
 \Leftrightarrow \cot g\frac{B}{2} = \cot g\frac{C}{2}\\
 \Leftrightarrow B = C
\end{array}$
Ta có $ĐPCM$
$8/$ do $c{\rm{o}}{{\rm{s}}^3}\frac{A}{2}c{\rm{o}}{{\rm{s}}^3}\frac{B}{2}\# 0$,nên ta có: 
       $\sin \frac{A}{2}c{\rm{o}}{{\rm{s}}^3}\frac{B}{2} = \sin \frac{B}{2}c{\rm{o}}{{\rm{s}}^3}\frac{A}{2}$
                $\begin{array}{l}
 \Leftrightarrow \frac{{\sin \frac{A}{2}c{\rm{o}}{{\rm{s}}^3}\frac{B}{2}}}{{c{\rm{o}}{{\rm{s}}^3}\frac{A}{2}c{\rm{o}}{{\rm{s}}^3}\frac{B}{2}}} = \frac{{\sin \frac{B}{2}c{\rm{o}}{{\rm{s}}^3}\frac{A}{2}}}{{c{\rm{o}}{{\rm{s}}^3}\frac{A}{2}c{\rm{o}}{{\rm{s}}^3}\frac{B}{2}}}\\
 \Leftrightarrow tg\frac{A}{2}(1 + t{g^2}\frac{A}{2}) = tg\frac{B}{2}(1 + t{g^3}\frac{B}{2})\\
 \Leftrightarrow (tg\frac{A}{2} - tg\frac{B}{2}) + (t{g^3}\frac{A}{2} - t{g^3}\frac{B}{2}) = 0\\
 \Leftrightarrow (tg\frac{A}{2} - tg\frac{B}{2})(1 + t{g^2}\frac{A}{2} + tg\frac{A}{2}tg\frac{B}{2} + t{g^2}\frac{B}{2}) = 0\\
 \Leftrightarrow tg\frac{A}{2} - tg\frac{B}{2} = 0({x^2} + xy + {y^2} \ge 0)\\
 \Leftrightarrow A = B
\end{array}$
Ta có $ĐPCM$
$9/$ áp dụng hệ thức   ${\sin ^2}\frac{A}{2} = \frac{{1 - \cos A}}{2} = \frac{{1 - \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}}}{2} = \frac{{{a^2} - {{(b - c)}^2}}}{{4bc}}$
Hệ thức đã cho tương đương:    ${\sin ^2}\frac{A}{2} = \frac{{{a^2}}}{{4bc}}$
        $\begin{array}{l}
 \Leftrightarrow \frac{{{a^2} - {{(b - c)}^2}}}{{4bc}} = \frac{{{a^2}}}{{4bc}}\\
 \Leftrightarrow {(b - c)^2} = 0\\
 \Leftrightarrow b = c
\end{array}$
Ta có $ĐPCM$
$10/$ Áp dụng hệ thức  $c{\rm{o}}{{\rm{s}}^2}\frac{A}{2} = \frac{{1 + \cos A}}{2} = \frac{{1 + \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}}}{2} = \frac{{{{(b + c)}^2} - {a^2}}}{{4bc}}$
       $ \Rightarrow t{g^2}\frac{A}{2} = \frac{{{a^2} - {{(b - c)}^2}}}{{{{(b + c)}^2} - {a^2}}}$
Vì thế hệ thức đã cho đưa về dạng tương đương sau:
            $t{g^2}\frac{A}{2} = \frac{{{a^2}}}{{(a + b + c)(b + c - a)}}$
        $\begin{array}{l}
 \Leftrightarrow \frac{{{a^2} - {{(b - c)}^2}}}{{{{(b + c)}^2} - {a^2}}} = \frac{{{a^2}}}{{(a + b + c)(b + c - a)}}\\
 \Leftrightarrow \frac{{{a^2} - {{(b - c)}^2}}}{{(a + b + c)(b + c - a)}} = \frac{{{a^2}}}{{(a + b + c)(b + c - a)}}\\
 \Leftrightarrow b = c
\end{array}$
Ta có $ĐPCM$
$11/$ áp dụng công thức  ${l_a} = \frac{{2bc\cos \frac{A}{2}}}{{b + c}} \Rightarrow l_a^2 = \frac{{4{b^2}{c^2}}}{{{{(b + c)}^2}}}c{\rm{o}}{{\rm{s}}^2}\frac{A}{2} = \frac{{4{b^2}{c^2}}}{{{{(b + c)}^2}}}(1 + \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}) \\= \frac{{bc}}{{{{(b + c)}^2}}}\left[ {{{(b + c)}^2} - {a^2}} \right]$
Từ đó suy ra      $l_a^2 = \frac{{4bc - {a^2}}}{4}$
   $\begin{array}{l}
 \Leftrightarrow \frac{{bc\left[ {{{(b + c)}^2} - {a^2}} \right]}}{{{{(b + c)}^2}}} = \frac{{4bc - {a^2}}}{4}\\
 \Leftrightarrow 4bc{(b + c)^2} - 4bc{a^2} = 4bc{(b + c)^2} - {a^2}{(b + c)^2}\\
 \Leftrightarrow 4bc = {(b + c)^2}\\
 \Leftrightarrow {(b - c)^2} = 0\\
 \Leftrightarrow b = c
\end{array}$
Ta có  $ĐPCM$
$12/$ ta có      $\begin{array}{l}
{a^2} + {b^2} = tg\frac{C}{2}({a^2}tgA + {b^2}tgB)\\
\end{array}$
$ \Leftrightarrow {a^2}(1 - tg\frac{C}{2}tgA) + {b^2}(1 - tg\frac{C}{2}tgB) = 0$
   $ \Leftrightarrow \frac{{{a^2}}}{{\cos A}}c{\rm{os}}(\frac{C}{2} + A) + \frac{{{b^2}}}{{\cos B}}c{\rm{os}}(\frac{C}{2} + B) = 0            (1)$
Vì  $(\frac{C}{2} + A) + (\frac{C}{2} + B) = \pi  \Rightarrow c{\rm{os}}(\frac{C}{2} + B) =  - c{\rm{os}}(\frac{C}{2} + A)$
Do đó  $(1) \Leftrightarrow c{\rm{os}}(\frac{C}{2} + A)({\sin ^2}A\cos B - {\sin ^2}B\cos A) = 0$
     $ \Leftrightarrow c{\rm{os}}(\frac{C}{2} + A)\left[ {(1 - c{\rm{o}}{{\rm{s}}^2}A)\cos B - (1 - c{\rm{o}}{{\rm{s}}^2}B)\cos A} \right] = 0$
       $\Leftrightarrow c{\rm{os}}(\frac{C}{2} + A)(\cos B - \cos A)(1 + \cos A\cos B) = 0        (2)$
Do $1+cosAcosB>$,nên :
        $(2) \Leftrightarrow \left[ \begin{array}{l}
c{\rm{os}}(\frac{C}{2} + A) = 0\\
\cos A = \cos B
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\frac{C}{2} + A = \frac{A}{2} + \frac{B}{2} + \frac{C}{2}\\
A = B
\end{array} \right. \Leftrightarrow A = B$
Ta có $ĐPCM$
$13/$ ta có  ${h_a} = \sqrt {p(p - a)}  \Leftrightarrow \frac{{2S}}{4} = \sqrt {p(p - a)} $
   $ \Leftrightarrow \frac{2}{a}\sqrt {p(p - a)(p - b)(p - c)}  = \sqrt {p(p - a)}$
      $ \Leftrightarrow 2\sqrt {(p - b)(p - c)}  = a                           (1)$
Theo bất đẳng thức Cosi,ta có
   $2\sqrt {(p - b)(p - c)}  \le (p - b) + (p - c) \Leftrightarrow 2\sqrt {(p - b)(p - c)}  \le a$
Dấu “$=$” xảy ra khi $b=c$
Từ ($1$) suy ra trong ($2$) có dấu “$=$”,từ đó suy ra $ĐPCM$


Thẻ

Lượt xem

804
Chat chit và chém gió
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: ..................... 11/5/2018 1:39:52 PM
  • vinhlyle: hi 11/10/2018 8:03:02 PM
  • ๖ۣۜBossღ: 3:00 AM 11/11/2018 10:17:11 PM
  • quanghungnguyen256: sao wweb cứ đăng nhập mãi nhĩ, k trả lời đc bài viết nữa 11/30/2018 4:35:45 PM
  • quanghungnguyen256: web nát r à 11/30/2018 4:36:19 PM
  • quanghungnguyen256: 11/11/2018 h là 30/11. oi web chắt k ai dùng r hả 11/30/2018 4:36:44 PM
  • quanghungnguyen256: rofum ngon thế mà sao admin lại k nâng cấp nhỡ 11/30/2018 4:37:07 PM
  • nguyenlena2611: talk_to_the_hand 12/24/2018 9:24:22 PM
  • nguyenlena2611: big_grinsurpriseblushing 12/24/2018 9:28:35 PM
  • Việt EL: ^^ 2/16/2019 8:37:21 PM
  • Việt EL: he lô he lô 2/16/2019 8:37:34 PM
  • Việt EL: y sờ e ny guan hiar? 2/16/2019 8:38:15 PM
  • Việt EL: èo 2/16/2019 8:38:32 PM
  • Việt EL: éo có ai 2/16/2019 8:40:48 PM
  • dfgsgsd: Hế lô 2/21/2019 9:52:51 PM
  • dfgsgsd: Lờ ôn lôn huyền ..... 2/21/2019 9:53:01 PM
  • dfgsgsd: Cờ ắc cắc nặng.... 2/21/2019 9:53:08 PM
  • dfgsgsd: Chờ im.... 2/21/2019 9:53:12 PM
  • dfgsgsd: Dờ ai dai sắc ...... 2/21/2019 9:53:23 PM
  • dfgsgsd: ờ ưng nưng sắc.... 2/21/2019 9:53:37 PM
  • dfgsgsd: Mờ inh minh huyền.... đờ ep nặng... trờ ai... quờ a sắc.... đờ i.... 2/21/2019 9:54:11 PM
  • nln: winking 2/28/2019 9:02:14 PM
  • nln: big_grin 2/28/2019 9:02:16 PM
  • nln: smug 2/28/2019 9:02:18 PM
  • nln: talk_to_the_hand 2/28/2019 9:02:20 PM
  • nln: Specialise 2/28/2019 9:51:54 PM
  • nlnl: But they have since become two much-love 2/28/2019 10:03:10 PM
  • dhfh: sad 3/2/2019 9:27:26 PM
  • ๖ۣۜNatsu: allo 3/3/2019 11:39:32 PM
  • ffhfdh: reyeye 3/5/2019 8:53:26 PM
  • ffhfdh: ủuutrr 3/5/2019 8:53:29 PM
  • dgdsgds: ujghjj 3/24/2019 9:12:47 PM
  • ryyty: ghfghgfhfhgfghgfhgffggfhhghfgh 4/9/2019 9:34:48 PM
  • gdfgfd: gfjfjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj 4/14/2019 9:53:38 PM
  • gdfgfd: sadsadsadsadsadsad 4/14/2019 9:59:30 PM
  • fdfddgf: trâm anh 4/17/2019 9:40:50 PM
  • gfjggg: a lot of advice is available for college leavers 5/10/2019 9:32:12 PM
  • linhkim2401: big_hug 7/3/2019 9:35:43 AM
  • ddfhfhdff: could you help me do this job 7/23/2019 10:29:49 PM
  • ddfhfhdff: i don't know how to 7/23/2019 10:30:03 PM
  • ddfhfhdff: Why you are in my life, why 7/23/2019 10:30:21 PM
  • ddfhfhdff: Could you help me do this job? I don't know how to get it start 7/23/2019 10:31:45 PM
  • ddfhfhdff: big_grinwhistling 7/23/2019 10:32:50 PM
  • ddfhfhdff: coukd you help me do this job 7/23/2019 10:39:22 PM
  • ddfhfhdff: i don't know how to get it start 7/23/2019 10:39:38 PM
  • huy31012002:9/13/2019 10:43:52 PM
  • huongpha226: hello 11/29/2019 8:22:41 PM
  • hoangthiennhat29: pig 4/2/2020 9:48:11 PM
  • cutein111: . 4/9/2020 9:23:18 PM
  • cutein111: . 4/9/2020 9:23:19 PM
  • cutein111: . 4/9/2020 9:23:20 PM
  • cutein111: . 4/9/2020 9:23:22 PM
  • cutein111: . 4/9/2020 9:23:23 PM
  • cutein111: hello 4/9/2020 9:23:30 PM
  • cutein111: mấy bạn 4/9/2020 9:23:33 PM
  • cutein111: mấy bạn cần người ... k 4/9/2020 9:23:49 PM
  • cutein111: mik sẽ là... của bạn 4/9/2020 9:23:58 PM
  • cutein111: hihi 4/9/2020 9:24:00 PM
  • cutein111: https://www.youtube.com/watch?v=EgBJmlPo8Xw 4/9/2020 9:24:12 PM
  • nhdanfr: Hello 9/17/2020 8:34:26 PM
  • minhthientran594: hi 11/1/2020 10:32:29 AM
  • giocon123fa: hi mọi ngừi :33 1/31/2021 10:31:56 PM
  • giocon123fa: call_me 1/31/2021 10:32:46 PM
  • giocon123fa: không còn ai nữa à? 1/31/2021 10:36:35 PM
  • giocon123fa: toi phải up cái này lên face để mọi người vào chơilaughing) 1/31/2021 10:42:37 PM
  • manhleduc712: hí ae 2/23/2021 8:51:42 AM
  • vaaa: f 3/27/2021 9:40:49 AM
  • vaaa: fuck 3/27/2021 9:40:57 AM
  • L.lawiet: l 6/4/2021 1:26:16 PM
  • tramvin1: . 6/14/2021 8:48:20 PM
  • dothitam04061986: solo ff ko 7/7/2021 2:47:36 PM
  • dothitam04061986: ai muốn xem ngực e ko ạ 7/7/2021 2:49:36 PM
  • dothitam04061986: e nứng 7/7/2021 2:49:52 PM
  • Phương ^.^: ngủ hết rồi ạ? 7/20/2021 10:16:31 PM
  • ducanh170208: hi 8/15/2021 10:23:19 AM
  • ducanh170208: xin chao mọi người 8/15/2021 10:23:39 AM
  • nguyenkieutrinh: hiu lo m.n 9/14/2021 7:30:55 PM
  • nguyenngocha651: Xin chào tất cả các bạn 9/20/2021 3:13:46 PM
  • nguyenngocha651: Có ai onl ko, Ib với mik 9/20/2021 3:14:08 PM
  • nguyenngocha651: Còn ai on ko ạ 9/20/2021 3:21:34 PM
  • nguyenngocha651: ai 12 tủi, sinh k9 Ib Iw mik nhố 9/21/2021 10:22:38 AM
Đăng nhập để chém gió cùng mọi người
  • dvthuat
  • hoàng anh thọ
  • nhungtt0312
  • Xusint
  • tiendat.tran.79
  • babylove_yourfriend_1996
  • thaonguyenxanh1369
  • hoangthao0794
  • zzzz1410
  • watashitipho
  • HọcTạiNhà
  • Cá Hêu
  • peonycherry
  • phanqk1996
  • giothienxung
  • khoaita567
  • nguyentranthuylinhkt
  • maimatmet
  • minh.mai.td
  • quybalamcam
  • m_internet001
  • bangtuyettrangsocola
  • chizjzj
  • vuivequa052
  • haibanh237
  • sweetmilk1412
  • panhhuu
  • mekebinh
  • Nghịch Thuỷ Hàn
  • Lone star
  • LanguaeofLegend
  • huongduong2603
  • i_love_you_12387
  • a ku
  • heohong_congchua
  • impossitable111
  • khanh
  • ๖ۣۜJinღ๖ۣۜKaido
  • huynhhoangphu.10k7
  • namduong2016
  • vycreepers
  • Bảo Phươngg
  • Yurika Yuki
  • tinysweets98
  • Thùy Trang
  • Hàn Thiên Dii
  • ๖ۣۜConan♥doyleღ
  • LeQuynh
  • thithuan27
  • huhunhh
  • ๖ۣۜDemonღ
  • nguyenxinh6295
  • phuc642003
  • diephuynh2009
  • Lê Giang
  • Han Yoon Min
  • ...
  • thuyvan
  • Mặt Trời Bé
  • DoTri69
  • bac1024578
  • Hạ Vân
  • thuong0122
  • nhakhoahoc43
  • tuanngo.apd
  • Đức Vỹ
  • ๖ۣۜCold
  • Lethu031193
  • salihova.eldara