|
Điều kiện: $a > 0,\,a \ne 1,\,x > 0,\,x \ne 1$ Chọn $a$ làm cơ số : $\begin{array}{l} \left( 1 \right) \Leftrightarrow \frac{{\log _a^2\left( {{\rm{ax}}} \right)}}{{{{\log }_a}x}} = \frac{1}{2}{\log _a}\frac{1}{a} \Leftrightarrow {\left( {{{\log }_a}x + 1} \right)^2} = - \frac{1}{2}{\log _a}x\\ \,\,\,\, \Leftrightarrow 2\log _a^2x + 5{\log _a}x + 2 = 0\Leftrightarrow \left[ \begin{array}{l} {\log _a}x = - 2\\ {\log _a}x = - \frac{1}{2} \end{array} \right.\Leftrightarrow \left[ \begin{array}{l} x = {a^{ - 2}}\\ x = {a^{ - \frac{1}{2}}} \end{array} \right. \end{array}$ Vậy $\left[ \begin{array}{l} x = \frac{1}{{{a^2}}}\\ x = \frac{1}{{\sqrt a }} \end{array} \right.$
|