|
$1)\,\,\,\,\left\{ \begin{array}{l} x + y > 0\\ x \ne y \end{array} \right.$ đặt $\begin{array}{l} u = x + y\\ v = x - y \end{array}$ Ta có $\left\{ \begin{array}{l} {u^{\frac{1}{v}}} = \frac{1}{{2\sqrt 3 }}\\ u{.2^{ - v}} = 48 \end{array} \right.\,\,\Leftrightarrow \,\,\left\{ \begin{array}{l} \frac{1}{v}{\log _2}u = - {\log _2}2\sqrt 3 \\ {\log _2}u - v = {\log _2}48 \end{array} \right.$ $\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l} {\log _2}u = v + 4 + {\log _2}3\\ \frac{1}{v}\left( {v + 4 + {{\log }_2}3} \right) = - 1 - \frac{1}{2}{\log _2}3 \end{array} \right.\\ \Leftrightarrow \,\left\{ \begin{array}{l} v = - 2\\ {\log _2}u = 2 + {\log _2}3 \end{array} \right.\,\,\,\,\,\ \Leftrightarrow \left\{ \begin{array}{l} v = - 2\\ u = 12 \end{array} \right. \end{array}$ Do đó ta có hệ $\left\{ \begin{array}{l} x + y = 12\\ x - y = - 2 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \left\{ \begin{array}{l} x = 5\\ y = 7 \end{array} \right.$ $2)$ Biến đổi hệ thành: $\left\{ \begin{array}{l} {x^2} = {9^{\frac{2}{y}}}\\ {\left( {\frac{{324}}{{81}}} \right)^{\frac{1}{y}}} = 2 \end{array} \right.\,\,(y \ne 0)\,\,\, \Leftrightarrow \left\{ \begin{array}{l} {x^2} = {9^{\frac{2}{y}}}\\ {2^{\frac{2}{y}}} = 2 \end{array} \right.\,\ \Leftrightarrow \left\{ \begin{array}{l} x = \pm 3\\ y = 2 \end{array} \right.$ Hệ có $2$ nghiệm là $( - 3,2)\,\,\,\,\,;\,\,\,\,\,(3,2)$
|