|
Điều kiện : $\left\{ \begin{array}{l} 1 + x > 0\\ 1 - y > 0\\ 1 + 2x > 0\\ 1 + 2y > 0 \end{array} \right.$ Hệ có thể biến dổi thành : $\left\{ \begin{array}{l} 2{\log _{1 + x}}\left( {1 - y} \right) + 2{\log _{1 - y}}\left( {1 + x} \right) = 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ {\log _{1 + x}}\left( {1 + 2y} \right) + {\log _{1 - y}}\left( {1 + 2x} \right) = 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array} \right.$ $(1) \Leftrightarrow \,{\log _{1 + x}}\left( {1 - y} \right) + \frac{1}{{{{\log }_{1 + x}}\left( {1
- y} \right)}} = 2$ $X = {\log _{1 + x}}\left( {1 - y} \right)$ Ta có: ${X^2} - 2X + 1 = 0\,\,\,\,\,\, \Leftrightarrow X = 1$ $ \Leftrightarrow \,\,y = - x$. Từ đó : $\begin{array}{l} (2) \Leftrightarrow \,{\log _{1 + x}}\left( {1 - 2x} \right) + {\log _{1 + x}}\left( {1 + 2x} \right) = 2\\ \,\,\,\,\,\,\,\, \Leftrightarrow 1 - 4{x^2} = {\left( {1 + x} \right)^2}\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\,\,5{x^2} + 2x = 0 \end{array}$ $ \Leftrightarrow \left[ \begin{array}{l} x = 0\,\,\,\,\,\left( l \right)\\ x = \frac{{ - 2}}{5} \end{array} \right.$ Vậy $\left\{ \begin{array}{l} x = - \frac{2}{5}\\ y = \frac{2}{5} \end{array} \right.$
|