|
$\begin{array}{l} 1)\,\,\,\,\,\left\{ \begin{array}{l} xy \ne 1\\ 0 < x + y \ne 1 \end{array} \right.\\ \,\,\,\,\,(1) \Leftrightarrow \,\,\,{\log _{x + y}}\left| {xy} \right|.{\log _{\left| {xy} \right|}}4\left| {xy} \right| = 1\\ \,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,{\log _{x + y}}4\left| {xy} \right| = 1\\ \,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,4\left| {xy} \right| = x + y \end{array}$ Từ đó ta có hệ : $\left\{ \begin{array}{l} \,4\left| {xy} \right| = x + y\\ x - y = 2\sqrt {3\,} \end{array} \right.$ $\begin{array}{l} \Leftrightarrow \,\,\left\{ \begin{array}{l} y = x - 2\sqrt 3 \\ 4\left| {x\left( {x - 2\sqrt 3 } \right)} \right| = 2x - 2\sqrt 3 \end{array} \right.\\ \Leftrightarrow \,\,\left\{ \begin{array}{l} x \ge \sqrt 3 \\ {\left[ {2\left( {x - 2\sqrt 3 } \right)} \right]^2} - {\left( {x - \sqrt 3 } \right)^2} = 0 \end{array} \right.\\ \Leftrightarrow \,\,\left\{ \begin{array}{l} x \ge \sqrt 3 \\ \left[ \begin{array}{l} 2{x^2} - \left( {4\sqrt 3 - 1} \right)x - \sqrt 3 = 0\\ 2{x^2} - \left( {4\sqrt 3 + 1} \right)x + \sqrt 3 = 0 \end{array} \right. \end{array} \right.\,\,\,\, \Leftrightarrow \left[ \begin{array}{l} x = \frac{{3 + 2\sqrt 3 }}{2}\\ x = 2 + \sqrt 3 \end{array} \right. \end{array}$ - Với $x = \frac{{3 + 2\sqrt 3 }}{2}\,\,\,\,\, \Rightarrow \,\,\,y = x - 2\sqrt 3 = 2 - \sqrt 3 $ $xy = \left( {2 + \sqrt 3 } \right)\left( {2 - \sqrt 3 } \right) = 1:$ Không thỏa điều kiện Vậy hệ có một nghiệm là$\left( {\frac{{3 + 2\sqrt 3 }}{2},\,\,\frac{{3 - 2\sqrt 3 }}{2}} \right)$ $2)$ ĐS : $\left( {\frac{{5 + \sqrt 5 }}{2},\,\frac{{5 - \sqrt 5 }}{2}} \right)$
|