|
$1$) Điều kiện : $\left\{ \begin{array}{l} 1 \ne 2 - x > 0\\ 1 \ne 4 - y > 0\\ 2 - y > 0\\ 2x - 2 > 0 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\,\,\,\left\{ \begin{array}{l} 1 < x < 2\\ y < 2 \end{array} \right.$ $1 < x < 2\,\,\, \Rightarrow \,\,0 < 2 - x < 1\,\,$ $y < 2\,\,\,\, \Rightarrow \,\,\,4 - y > 1$ do đó : $\begin{array}{l} \,\,\,\,\,\,\,\left\{ \begin{array}{l} {\log _{2 - x}}\left( {2 - y} \right) > 0\\ {\log _{4 - y}}\left( {2x - 2} \right) > 0 \end{array} \right.\,\,\,\,\,\, \Leftrightarrow \,\,\,\,\left\{ \begin{array}{l} 0 < 2 - y < 1\\ 2x - 2 > 1 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x > \frac{3}{2}\\ 1 < y < 2 \end{array} \right. \end{array}$ Vậy ĐS : $\left\{ \begin{array}{l} \frac{3}{2} < x < 2\\ 1 < y < 2 \end{array} \right.$ $2$) ĐS : $\left\{ \begin{array}{l} 1 < x < 2\\ 1 < y < 2 \end{array} \right.$ $3$) ĐS: $\left\{ \begin{array}{l} 4 < x < 5\\ \frac{5}{2} < y < 3 \end{array} \right.$
|