giải các phương trình sau:
a/ $\sqrt{x^{2}+x+4}+\sqrt{x^{2}+x+1}=\sqrt{2x^{2}+2x+9}$
b/ $x^{3}+1=2\sqrt[3]{2x-1}$
c/ $\sqrt{x+\sqrt{x}}-\sqrt{x-\sqrt{x}}=\frac{3}{2}\sqrt{\frac{x}{x+\sqrt{x}}}$
d/ $\sqrt[3]{x+34}=\sqrt[3]{x-3}=1$
e/ $\sqrt[4]{97-x}+\sqrt[3]{x-15}=4$
f/ $\sqrt{1-x^{2}}=\left(\frac{2}{3}-\sqrt{x}\right)^{2}$
g/ $\sqrt[n]{\left(x+1\right)^{2}}+\sqrt[n]{\left(x-1\right)^{2}}=4\sqrt[n]{x^{2}-1}$
a/ $\sqrt{x^{2}+x+4}+\sqrt{x^{2}+x+1}=\sqrt{2x^{2}+2x+9}$
đặt : $ x^{2}+x+1=t (t>0)$ ta được:
$\sqrt{t+2}+\sqrt{t}=\sqrt{2t+7}$
$\Leftrightarrow t+3+t+2+2\sqrt{t^{2}+3t}=2t+7$
$\Leftrightarrow 2\sqrt{t^{2}+3t}=4 \Leftrightarrow \sqrt{t^{2}+3t}=2 \Leftrightarrow t^{2}+3t=4\Leftrightarrow  t^{2}+3t-4=0$
$\Leftrightarrow \left[ \begin{array}{l}t=1 \\t=-4\end{array} \right.$ loại $t=-4$
$t=1 \Leftrightarrow x^{2}+x+1=1\Leftrightarrow x^{2}+x=0\Leftrightarrow x=0, x=-1$

b/ $x^{3}+1=2\sqrt[3]{2x-1}$
đặt $\sqrt[3]{2x-1}=t\Leftrightarrow  t^{3}=2x-1\Leftrightarrow x^{3}=2t-1$
$\Leftrightarrow t^{3}-x^{3}=2\left(x-t\right)\Leftrightarrow \left(t-x\right)\left(t^{2}+x^{2}+tx+2\right)=0\Leftrightarrow \left[ \begin{array}{l}x = t(1)\\t^{2}+x^{2}+tx+2=0(2)\end{array} \right.$
với $t=x: \sqrt[3]{2x-1}=x\Leftrightarrow x^{3}-2x+1=0\Leftrightarrow \left(x^{3}-1\right)-2\left(x-1\right)=0$
$\Leftrightarrow \left(x-1\right)\left(x^{2}-x+1\right)=0\Leftrightarrow \left[ \begin{array}{l}x =1\\ x=\frac{-1-\sqrt{5}}{2}\\x = \frac{-1+\sqrt{5}}{2}\end{array} \right.$
từ $(2): \left(t^{2}+tx+\frac{x^{2}}{4}\right)+\frac{3x^{2}}{4}+2=\left(t+\frac{x}{2}\right)^{2}+\frac{3x^{2}}{4}+2>0, \forall t, x (2)$ vô nghiệm.

c/ $\sqrt{x+\sqrt{x}}-\sqrt{x-\sqrt{x}}=\frac{3}{2}\sqrt{\frac{x}{x+\sqrt{x}}}$
điều kiện: $\begin{cases}x\geq 0 \\ x-\sqrt{x}\geq 0 \end{cases}\Leftrightarrow \begin{cases}x\geq 0 \\ x\leq 0, x\geq 1 \end{cases}\Leftrightarrow x\geq 1$
với $x\geq 1(*)\Leftrightarrow x+\sqrt{x}-\sqrt{x^{2}-x}=\frac{3}{2}\sqrt{x}$
$\Leftrightarrow x-\frac{\sqrt{x}}{2}-\sqrt{x}\left(\sqrt{x-1}\right)=0$
$\Leftrightarrow \sqrt{x}\left(\sqrt{x}-\frac{1}{2}-\sqrt{x-1}\right)=0$
$\Leftrightarrow \sqrt{x}-\frac{1}{2}=\sqrt{x-1}\Leftrightarrow x+\frac{1}{4}-\sqrt{x}=x-1$
$\Leftrightarrow \sqrt{x}=\frac{5}{4}\Leftrightarrow x=\frac{25}{16}$

d/ $\sqrt[3]{x+34}=\sqrt[3]{x-3}=1$
đặt $\begin{cases}\sqrt[3]{x+34}=u \\ \sqrt[3]{x-3}=v \end{cases}\Rightarrow \begin{cases}x+34=u^{3} \\ x-3=v^{3} \end{cases}\Rightarrow u^{3}-v^{3}=37$
$\Leftrightarrow \left(u-v\right)\left(u^{2}+v^{2}+uv\right)=37$
$\Leftrightarrow \left(u-v\right)[ \left(y-v\right)^{2}+3uv] =37$
$\Leftrightarrow [ 1^{2}+3uv]=37 \Leftrightarrow 3uv=36 \Leftrightarrow uv=12$
$\Rightarrow \begin{cases}u-v=1 \\ u\left(-v\right)=-12 \end{cases}$: u,-v lần lượt là nghiệm của phương trình:
$X^{2}-X-12=0\Leftrightarrow \begin{cases}X= 4\\ X= -3\end{cases} \Rightarrow \begin{cases}u=4 \\ v=3 \end{cases}\Rightarrow \begin{cases}x+34=4^{3} \\ x-3=3^{3} \end{cases}\Rightarrow x=30$

e/ $\sqrt[4]{97-x}+\sqrt[3]{x-15}=4$
điều kiện: $15\leq x \leq 97$
đặt: $\begin{cases}u=\sqrt[4]{97-x} \\ v=\sqrt[4]{x-15} \end{cases}\Leftrightarrow \begin{cases}u^{4}=97-x= \\ v^{4}=x-15 \end{cases}\Leftrightarrow \begin{cases}u+v=4 \\ u^{4}+v^{4}=82 \end{cases}$
$u^{4}+v^{4}=\left(u^{2}+v^{2}\right)^{2}-2u^{2}v^{2}=[\left(u+v\right)^{2}-2uv]^{2}-2u^{2}v^{2}=82$
$\Leftrightarrow \left(16-2uv\right)^{2}-2u^{2}v^{2}=82$
$\Leftrightarrow 256-64uv+4u^{2}v^{2}-2u^{2}v^{2}=82$
$\Leftrightarrow 2u^{2}v^{2}-64uv+174=0\Leftrightarrow u^{2}v^{2}-32uv+87=0$
$\Leftrightarrow \left[ \begin{array}{l}uv=3\\uv=29\end{array} \right.$
$\begin{cases}u+v=4\\ uv=3 \end{cases}\Leftrightarrow \begin{cases}u=1 \\ v=3 \end{cases}$ hay $\begin{cases}1=97-x \\ 81= x-15\end{cases}\Leftrightarrow x=98$ hay $\begin{cases}81= 97-x\\ 1=x-15 \end{cases}\Leftrightarrow x=16$
$ \begin{cases}u+v=4 \\ uv=29 \end{cases} $: u, v theo thứ tự là nghiệm của phương trình
$ X^{2} -4X+29=0 $ vô nghiệm

f/ $\sqrt{1-x^{2}}=\left(\frac{2}{3}-\sqrt{x}\right)^{2}$
đặt $ \begin{cases}\sqrt{x}=y \\ \frac{2}{3}-\sqrt{x}=z \end{cases} \Rightarrow \begin{cases}y^{4}=x^{2} \\ z^{4}=1-x^{2} \\ y+z=\frac{2}{3} \end{cases} \Leftrightarrow \begin{cases}y^{4}+z^{4}=1 \\ y+z=\frac{2}{3} \end{cases} $
được phương trình $y^{4}+ \left(\frac{2}{3}-y\right) ^{4}=1 \Leftrightarrow y^{4}+ \left(y-\frac{2}{3}\right) ^{4}=1$
lại đặt $t=y-\frac{1}{3} \Rightarrow \left(t+\frac{1}{3}\right) ^{4}+ \left(t-\frac{1}{3}\right) ^{4}=1$
$ \Rightarrow t^{4}+4.t^{3}.\frac{1}{3}+6.t^{2}.\frac{1}{9}+4.t.\frac{1}{27}+\frac{1}{81}+t^{4}-4t{3}.\frac{1}{3}+6t^{2}.\frac{1}{9}-4t\frac{1}{27}+\frac{1}{81}=1$
$ \Rightarrow 2t^{4}+\frac{12}{9}.t^{2}-\frac{79}{81}=0 \Leftrightarrow 2t^{4}+\frac{4}{3}.t^{2}-\frac{79}{81}=0$
$ \Rightarrow \Delta' \frac{4}{9}+\frac{158}{81}=\frac{194}{81}$
$\Rightarrow t^{2}=\frac{\frac{-2}{3}+\frac{\sqrt{194}}{9}}{2} =\frac{-1}{3}+\frac{\sqrt{194}}{18}=\frac{\sqrt{ 194}-6}{18}$
$ \Rightarrow t= \pm \frac{ \sqrt{ 2 \sqrt{ 194}-12}}{6} \Rightarrow y= \sqrt{ x}  \pm  \frac{ \sqrt{ 2 \sqrt{ 194}-12}}{6}+\frac{1}{3} $
$ \Rightarrow x= \left(\pm \frac{ \sqrt{ 2 \sqrt{ 194}-12}}{6} +\frac{1}{3} \right) ^{2}=\frac{ \sqrt{ 194}}{18}-\frac{2}{9} \pm \frac{ \sqrt{ 2 \sqrt{ 194}-12}}{9}$

g/ $\sqrt[n]{\left(x+1\right)^{2}}+\sqrt[n]{\left(x-1\right)^{2}}=4\sqrt[n]{x^{2}-1}$
nếu  $n=2k$ thì điều kiện $|x|>1$
với $|x|>1, (*) \Leftrightarrow \sqrt[n]{\frac{ \left(x+1\right) ^{2}}{x^{2}-1}}+\sqrt[n]{ \frac{\left(x-1\right) ^{2}}{x^{2}-1}}=4$
$\sqrt[n]{\frac{x+1}{x-1}}+\sqrt[n]{\frac{x-1}{x+1}}=4$
đặt $\sqrt[n]{\frac{x+1}{x-1}}=t $ được phương trình $t +\frac{1}{t}=4$
$ \Rightarrow t^{2}-4t+1=0 \Leftrightarrow \left[ \begin{array}{l}t = 2-\sqrt{3}\\t = 2+\sqrt{ 3}\end{array} \right. $
nếu $t= 2- \sqrt{ 3} \Rightarrow \frac{x+1}{x-1}=\left( 2- \sqrt{ 3}\right)^{n} \Rightarrow x=\frac{ \left(2- \sqrt{ 3}\right) ^{n}+1}{ \left(2- \sqrt{ 3}\right) ^{n}-1}$
nếu $ t= 2+ \sqrt{ 3} \Rightarrow \frac{x+1}{x-a}=\left( 2+ \sqrt{ 3} \right)^{n} \Rightarrow x=\frac{ \left(2+ \sqrt{ 3}\right) ^{n}+1}{ \left(2+ \sqrt{ 3}\right) ^{n}-1}$

Thẻ

Lượt xem

679

Lý thuyết liên quan

Chat chit và chém gió
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: ..................... 11/5/2018 1:39:52 PM
  • vinhlyle: hi 11/10/2018 8:03:02 PM
  • ๖ۣۜBossღ: 3:00 AM 11/11/2018 10:17:11 PM
  • quanghungnguyen256: sao wweb cứ đăng nhập mãi nhĩ, k trả lời đc bài viết nữa 11/30/2018 4:35:45 PM
  • quanghungnguyen256: web nát r à 11/30/2018 4:36:19 PM
  • quanghungnguyen256: 11/11/2018 h là 30/11. oi web chắt k ai dùng r hả 11/30/2018 4:36:44 PM
  • quanghungnguyen256: rofum ngon thế mà sao admin lại k nâng cấp nhỡ 11/30/2018 4:37:07 PM
  • nguyenlena2611: talk_to_the_hand 12/24/2018 9:24:22 PM
  • nguyenlena2611: big_grinsurpriseblushing 12/24/2018 9:28:35 PM
  • Việt EL: ^^ 2/16/2019 8:37:21 PM
  • Việt EL: he lô he lô 2/16/2019 8:37:34 PM
  • Việt EL: y sờ e ny guan hiar? 2/16/2019 8:38:15 PM
  • Việt EL: èo 2/16/2019 8:38:32 PM
  • Việt EL: éo có ai 2/16/2019 8:40:48 PM
  • dfgsgsd: Hế lô 2/21/2019 9:52:51 PM
  • dfgsgsd: Lờ ôn lôn huyền ..... 2/21/2019 9:53:01 PM
  • dfgsgsd: Cờ ắc cắc nặng.... 2/21/2019 9:53:08 PM
  • dfgsgsd: Chờ im.... 2/21/2019 9:53:12 PM
  • dfgsgsd: Dờ ai dai sắc ...... 2/21/2019 9:53:23 PM
  • dfgsgsd: ờ ưng nưng sắc.... 2/21/2019 9:53:37 PM
  • dfgsgsd: Mờ inh minh huyền.... đờ ep nặng... trờ ai... quờ a sắc.... đờ i.... 2/21/2019 9:54:11 PM
  • nln: winking 2/28/2019 9:02:14 PM
  • nln: big_grin 2/28/2019 9:02:16 PM
  • nln: smug 2/28/2019 9:02:18 PM
  • nln: talk_to_the_hand 2/28/2019 9:02:20 PM
  • nln: Specialise 2/28/2019 9:51:54 PM
  • nlnl: But they have since become two much-love 2/28/2019 10:03:10 PM
  • dhfh: sad 3/2/2019 9:27:26 PM
  • ๖ۣۜNatsu: allo 3/3/2019 11:39:32 PM
  • ffhfdh: reyeye 3/5/2019 8:53:26 PM
  • ffhfdh: ủuutrr 3/5/2019 8:53:29 PM
  • dgdsgds: ujghjj 3/24/2019 9:12:47 PM
  • ryyty: ghfghgfhfhgfghgfhgffggfhhghfgh 4/9/2019 9:34:48 PM
  • gdfgfd: gfjfjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj 4/14/2019 9:53:38 PM
  • gdfgfd: sadsadsadsadsadsad 4/14/2019 9:59:30 PM
  • fdfddgf: trâm anh 4/17/2019 9:40:50 PM
  • gfjggg: a lot of advice is available for college leavers 5/10/2019 9:32:12 PM
  • linhkim2401: big_hug 7/3/2019 9:35:43 AM
  • ddfhfhdff: could you help me do this job 7/23/2019 10:29:49 PM
  • ddfhfhdff: i don't know how to 7/23/2019 10:30:03 PM
  • ddfhfhdff: Why you are in my life, why 7/23/2019 10:30:21 PM
  • ddfhfhdff: Could you help me do this job? I don't know how to get it start 7/23/2019 10:31:45 PM
  • ddfhfhdff: big_grinwhistling 7/23/2019 10:32:50 PM
  • ddfhfhdff: coukd you help me do this job 7/23/2019 10:39:22 PM
  • ddfhfhdff: i don't know how to get it start 7/23/2019 10:39:38 PM
  • huy31012002:9/13/2019 10:43:52 PM
  • huongpha226: hello 11/29/2019 8:22:41 PM
  • hoangthiennhat29: pig 4/2/2020 9:48:11 PM
  • cutein111: . 4/9/2020 9:23:18 PM
  • cutein111: . 4/9/2020 9:23:19 PM
  • cutein111: . 4/9/2020 9:23:20 PM
  • cutein111: . 4/9/2020 9:23:22 PM
  • cutein111: . 4/9/2020 9:23:23 PM
  • cutein111: hello 4/9/2020 9:23:30 PM
  • cutein111: mấy bạn 4/9/2020 9:23:33 PM
  • cutein111: mấy bạn cần người ... k 4/9/2020 9:23:49 PM
  • cutein111: mik sẽ là... của bạn 4/9/2020 9:23:58 PM
  • cutein111: hihi 4/9/2020 9:24:00 PM
  • cutein111: https://www.youtube.com/watch?v=EgBJmlPo8Xw 4/9/2020 9:24:12 PM
  • nhdanfr: Hello 9/17/2020 8:34:26 PM
  • minhthientran594: hi 11/1/2020 10:32:29 AM
  • giocon123fa: hi mọi ngừi :33 1/31/2021 10:31:56 PM
  • giocon123fa: call_me 1/31/2021 10:32:46 PM
  • giocon123fa: không còn ai nữa à? 1/31/2021 10:36:35 PM
  • giocon123fa: toi phải up cái này lên face để mọi người vào chơilaughing) 1/31/2021 10:42:37 PM
  • manhleduc712: hí ae 2/23/2021 8:51:42 AM
  • vaaa: f 3/27/2021 9:40:49 AM
  • vaaa: fuck 3/27/2021 9:40:57 AM
  • L.lawiet: l 6/4/2021 1:26:16 PM
  • tramvin1: . 6/14/2021 8:48:20 PM
  • dothitam04061986: solo ff ko 7/7/2021 2:47:36 PM
  • dothitam04061986: ai muốn xem ngực e ko ạ 7/7/2021 2:49:36 PM
  • dothitam04061986: e nứng 7/7/2021 2:49:52 PM
  • Phương ^.^: ngủ hết rồi ạ? 7/20/2021 10:16:31 PM
  • ducanh170208: hi 8/15/2021 10:23:19 AM
  • ducanh170208: xin chao mọi người 8/15/2021 10:23:39 AM
  • nguyenkieutrinh: hiu lo m.n 9/14/2021 7:30:55 PM
  • nguyenngocha651: Xin chào tất cả các bạn 9/20/2021 3:13:46 PM
  • nguyenngocha651: Có ai onl ko, Ib với mik 9/20/2021 3:14:08 PM
  • nguyenngocha651: Còn ai on ko ạ 9/20/2021 3:21:34 PM
  • nguyenngocha651: ai 12 tủi, sinh k9 Ib Iw mik nhố 9/21/2021 10:22:38 AM
Đăng nhập để chém gió cùng mọi người
  • dvthuat
  • hoàng anh thọ
  • nhungtt0312
  • Xusint
  • tiendat.tran.79
  • babylove_yourfriend_1996
  • thaonguyenxanh1369
  • hoangthao0794
  • zzzz1410
  • watashitipho
  • HọcTạiNhà
  • Cá Hêu
  • peonycherry
  • phanqk1996
  • giothienxung
  • khoaita567
  • nguyentranthuylinhkt
  • maimatmet
  • minh.mai.td
  • quybalamcam
  • m_internet001
  • bangtuyettrangsocola
  • chizjzj
  • vuivequa052
  • haibanh237
  • sweetmilk1412
  • panhhuu
  • mekebinh
  • Nghịch Thuỷ Hàn
  • Lone star
  • LanguaeofLegend
  • huongduong2603
  • i_love_you_12387
  • a ku
  • heohong_congchua
  • impossitable111
  • khanh
  • ๖ۣۜJinღ๖ۣۜKaido
  • huynhhoangphu.10k7
  • namduong2016
  • vycreepers
  • Bảo Phươngg
  • Yurika Yuki
  • tinysweets98
  • Thùy Trang
  • Hàn Thiên Dii
  • ๖ۣۜConan♥doyleღ
  • LeQuynh
  • thithuan27
  • huhunhh
  • ๖ۣۜDemonღ
  • nguyenxinh6295
  • phuc642003
  • diephuynh2009
  • Lê Giang
  • Han Yoon Min
  • ...
  • thuyvan
  • Mặt Trời Bé
  • DoTri69
  • bac1024578
  • Hạ Vân
  • thuong0122
  • nhakhoahoc43
  • tuanngo.apd
  • Đức Vỹ
  • ๖ۣۜCold
  • Lethu031193
  • salihova.eldara