a.Cho $0<x_{1},x_{2},...,x_{n} < \frac{\pi}{2}, \forall n \in N$\$\left\{ \begin{array}{l} \end{array} \right.\left.0,1\right \}$ Chứng minh rằng: $\frac{\tan x_{1}+\tan x_{2}+...+\tan x_{n} }{n}\geq \tan (\frac{x_{1}+x_{2}+...+x_{n} }{n})$ b.Cho $\triangle ABC$ nhọn.Chứng minh rằng: *$\tan A+\tan B+\tan C \geq 3 \sqrt {3}$ *$\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}\geq \sqrt {3}$
|