Cho $\begin{cases}a_{1},a_{2},...,a_{n},b_{1},b_{2},...,b_{n}>0 \\ \frac{1}{p}+\frac{1}{q}=1 \\ n \in Z,n \geq 2; p,q>0\end{cases}$ Chứng minh rằng: $a_{1}b_{1}+a_{2}b_{2}+...+a_{n}b_{n}\leq \sqrt [p]{a^{p}_{1}+a^{p}_{2}+...+a^{p}_{n}}.\sqrt [q]{b^{q}_{1}+b^{q}_{2}+...+b^{q}_{n}}$
|