cos4x3−cos2x√1−tan2x=0⇔{cos4x3=cos2x1−sin2xcos2x>0⇔{cos4x3=1+cos2x2cos2xcos2x>0
⇔{2cos4x3=1+cos2xcos2x>0cos2x≠0⇔{2(2cos22x3−1)=1+4cos32x3−3cos2x3cos2x>01+cos2x2≠0⇔cos2x≠−1
Đặt cos2x3=t ta được:
4t3−4t2−3t+3=0⇔[t=1t=±√32⇔[cos2x3=1cos2x3=±√32
⇔[x=3kπx=±π2+k3πx=±5π4+k3πKết hợp ĐK
cos2x>0⇒x=3kπ,k∈Z