Cho tứ diện $ABCD$, trong đó góc tam diện đỉnh $D$ là tam diện vuông. Giả sử $DA=a, DB=b, DC=c$. Chứng minh rằng với mỗi điểm $M$ nằm trên một cạnh của $\triangle ABC$ thì: $S=d(A,DM)+d(B,DM)+d(C,DM) \leq \sqrt{2(a^2+b^2+c^2)}$ Khi nào xảy ra dấu bằng, ở đây $d(A,DM)$ là khoảng cách từ $A$ đến $DM$.
|