A. CÁC BƯỚC GIẢI
Bước $1$. Chứng minh $A(n)$ là một mệnh đề đúng khi $n = 1$.
Bước $2$. Với $k$ là số nguyên dương tùy ý, xuất phát từ giả thiết $A(n)$ là mệnh đề đúng khi $n = k$ , chứng minh $A(n)$ cũng là mệnh đề đúng khi $n = k + 1$.
Bước $3$. Khẳng định mệnh đề đúng với mọi giá trị tự nhiên của $n$.
B. ÁP DỤNG
Dạng I. Chứng minh đẳng thức
Ví dụ $1$. Chứng minh rằng với mọi số nguyên dương $n,$ ta luôn có
$1.2+2.3+⋯+n(n+1)=\frac{n(n+1)(n+2)}{3} (1)$
Giải. với $n = 1$, ta có Vế trái (VT) $ = 1.2 = 2$, Vế phải (VP)$ = \frac{1.2.3}{3} = 2$ nên $(1)$ đúng với $n =1.$
Gỉa sử $(1)$ đúng với $n =k$ , tức là
$1.2+2.3+⋯+k(k+1)=\frac{k(k+1)(k+2)}{3},k \in \mathbb{N^*}$. Ta chứng minh $(1)$ đúng với $n = k+1$, tức là phải chứng minh
$1.2+2.3+⋯+k(k+1)+ (k+1)(k+2)=\frac{(k+1)(k+2)(k+3)}{3}$
Thật vậy, từ giả thiết quy nạp, ta có
$1.2+2.3+⋯+k(k+1)+ (k+1)(k+2)=\frac{k(k+1)(k+2)}{3}+ (k+1)(k+2)=\frac{(k+1)(k+2)(k+3)}{3}$
Vậy $(1)$ đúng với mọi số nguyên dương $n.$
Ví dụ $2$.. Chứng minh rằng với mọi số nguyên dương $n$, ta luôn có
$1+3+5+⋯+(2n-1)= n^2 (2) $
Giải. với $n = 1$ ta có VT $= 1$, VP $= 1$ nên $(2)$ đúng với $n = 1.$
Giả sử $(2)$ đúng với $n = k$, tức là.
$1+3+5+⋯+(2k-1)= k^2,k \in \mathbb{N^*}. $
Ta chứng minh $(2)$ đúng với $n = k + 1$, tức là chứng minh
$1+3+5+⋯+(2k-1)+ ( 2k+1)= (k+1)^2$
Thật vậy, từ giả thiết quy nạp, ta có
$1+3+5+⋯+(2k-1)+ ( 2k+1)=k^2+(2k+1)= (k+1)^2$
Vậy $(2)$ đúng với mọi số nguyên dương $n.$
Bài tập tương tự. Chứng minh rằng với mọi số nguyên dương $n$, ta luôn có
$1+2+3+⋯+n= \frac{n(n+1)}{2} $
$ 2+5+8+⋯+3n-1 =\frac{n(3n+1)}{2} $
$ \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+⋯+\frac{1}{2^n} =\frac{2^n-1}{2^n} $
Dạng II. Chứng minh bất đẳng thức
Ví dụ $3$. Chứng minh rằng với mọi số nguyên dương $n\ge 3$, ta luôn có $2^n>2n+1 (3)$
Giải
Với $n = 3$, ta có VT $= 8$; VP$ = 7$ , nên $(3)$ đúng với $n = 3.$
Giả sử $(3)$ đúng với $n = k$, tức là $2^k>2k+1 ,k \in \mathbb{N^*},k \ge 3 $
Ta chứng minh $(3)$ đúng với $n = k +1$ tức là phải chứng minh $2^{k+1}>2(k+1)+1.$
Thật vậy, từ giả thiết quy nạp, ta có $2^{k+1}=2.2^k>2(2k+1)=4k+2=2k+3+(2k-1)>2k+3$ , do $k \in \mathbb{N^*},k \ge 3$.
Vậy $(3)$ đúng với mọi số nguyên $n \ge 3.$
Ví dụ $4$. Chứng minh rằng với mọi số nguyên dương $n\ge 2$, ta luôn có $3^n>3n+1 (4)$
Giải
Với $n = 2$, ta có VT $= 9$; VP$ = 7$ , nên $(4)$ đúng với $n = 3.$
Giả sử $(4)$ đúng với $n = k$, tức là $3^k>3k+1 ,k \in \mathbb{N^*},k \ge 2 $
Ta chứng minh $(4)$ đúng với $n = k +1$ tức là phải chứng minh $3^{k+1}>3(k+1)+1.$
Thật vậy, từ giả thiết quy nạp, ta có $3^{k+1}=3.3^k>3(3k+1)=9k+3>3k+6=3(k+1)+3$, do $k \in \mathbb{N^*},k \ge 2$.
Vậy $(4)$ đúng với mọi số nguyên $n \ge 2.$
Bài tập tương tự. Chứng minh rằng với mọi số nguyên dương $n \ge 2$, ta luôn có $2^{n+1} > 2n+3.$
Dạng III. Chứng minh sự chia hết
Ví dụ $5$. Chứng minh rằng với mọi số nguyên dương $n$, ta luôn có $n^3-n$ chia hết cho $3$. $(5)$
Giải
Với $n = 1$, ta có $n^3-n=0$ chia hết cho $3$ , nên $(5)$ đúng với $n = 1.$
Giả sử $(5)$ đúng với $n = k$, tức là $k^3-k$ chia hết cho $3$ ,$k \in \mathbb{N^*},k \ge 1 $
Ta chứng minh $(5)$ đúng với $n = k +1$ tức là phải chứng minh $(k+1)^3-(k+1)$ chia hết cho $3$
Thật vậy, ta có $(k+1)^3-(k+1)=(k^3-k)+3k(k+1)$.
Rõ ràng $3k(k+1)$ chia hết cho $3$ và $k^3-k$ chia hết cho $3$ theo giả thiết quy nạp.
Vì thế $(k+1)^3-(k+1)$ chia hết cho $3$.
Vậy $(5)$ đúng với mọi số nguyên dương $n$.
Ví dụ $6$. Chứng minh rằng với mọi số nguyên dương $n$, ta luôn có $4^n+15n-1$ chia hết cho $9$. $(6)$
Giải
Với $n = 1$, ta có $4^n+15n-1=18$ chia hết cho $9$ , nên $(6)$ đúng với $n = 1.$
Giả sử $(6)$ đúng với $n = k$, tức là $4^k+15k-1$ chia hết cho $9$ ,$k \in \mathbb{N^*},k \ge 1 $
Ta chứng minh $(6)$ đúng với $n = k +1$ tức là phải chứng minh $4^{k+1}+15(k+1)-1$ chia hết cho $9$
Thật vậy, ta có $4^{k+1}+15(k+1)-1=4(4^k+15k-1)-45k+18$.
Rõ ràng $-45k+18$ chia hết cho $9$ và $4^k+15k-1$ chia hết cho $9$ theo giả thiết quy nạp.
Vì thế $4^{k+1}+15(k+1)-1$ chia hết cho $9$.
Vậy $(6)$ đúng với mọi số nguyên dương $n$.
Bài tập tương tự. Chứng minh rằng với mọi số nguyên dương $n $
$n^3+ 3n^2+ 5n$ chia hết cho $3;$
$n^3+11n$ chia hết cho $6;$
$7^n-1$ chia hết cho $6.$