Giải các hệ : $\begin{array}{l} 1)\,\,\,\left\{ \begin{array}{l} {\log _x}\left( {x + 2} \right) > 2\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ {\log _2}{2^{x - 1}} + {\log _2}\left( {{2^{x + 1}} + 1} \right) < {\log _2}\left( {{{7.2}^x} + 12} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array} \right.\\ 2)\,\,\,\left\{ \begin{array}{l} {\log _{7 - x}}\left( {y - 4} \right) < 0\\ {\log _{y - 1}}\left( {3 - x} \right) < 0 \end{array} \right. \end{array}$
|
Giải các hệ : $\begin{array}{l} 1)\,\,\,\,\,\left\{ \begin{array}{l} {3^{\left| {{x^2} - 5x + 6} \right| - {{\log }_3}2}} = {2^{ - y - 1}}\\ 2\left| {y + 2} \right| - 5\left| y \right| - {\left( {y - 3} \right)^2} \ge - 5 \end{array} \right.\\ 2)\,\,\,\,\,\left\{ \begin{array}{l} {4^{\left| {{x^2} - 8x + 12} \right| - {{\log }_4}7}} = {7^{2y - 1}}\\ \left| {y - 3} \right| - 3\left| y \right| - 2{\left( {y + 1} \right)^2} \ge 1 \end{array} \right.\\ 3)\,\,\,\,\,\,\left\{ \begin{array}{l} {5^{\left| {{x^2} - 5x + 4} \right| - {{\log }_5}2}} = {2^{y - 3}}\\ 3\left| y \right| - \left| {y + 1} \right| + {\left( {y - 2} \right)^2} \le 3 \end{array} \right. \end{array}$
|
Giải hệ : $\left\{ \begin{array}{l} {2^{\left| {{x^2} - 2x - 3} \right| - {{\log }_2}3}} = {3^{ - y - 4}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 4\left| y \right| - \left| {y - 1} \right| + {\left( {y + 3} \right)^2} \le 8\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array} \right.$
|
Giải hệ : $\left\{ \begin{array}{l} \log _2^2x - {\log _2}{x^2} < 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ \frac {x^3}{3} - 3{x^2} + 5x + 9 > 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array} \right.$
|
|
|
|
|
|
|
|
|
|
|
|