|
Đặt $t=\sin x \Rightarrow t\in[0,1]$ Xét hàm: $g(t)=t(1-t^2), t\in[0,1]$ Ta có: $g'(t)=1-3t^2$ $g'(t)=0 \Leftrightarrow t=\frac{1}{\sqrt3}$ Từ đó suy ra: $\min_{t\in[0,1]} g(t)=\min \{ g(0),g(1),g(\frac{1}{\sqrt3}) \}=g(0)=g(1)=0$ $\max_{t\in[0,1]} g(t)=\max \{ g(0),g(1),g(\frac{1}{\sqrt3}) \}=g(\frac{1}{\sqrt3})=\frac{2}{3\sqrt3}$
|