a. Ta có:
$1=x+y\ge2\sqrt{xy} \Rightarrow xy\le\dfrac{1}{4}$
$A=x^2y^2+2+\dfrac{1}{x^2y^2}$
$=256x^2y^2+\dfrac{1}{x^2y^2}-255x^2y^2+2$
$\ge2\sqrt{256x^2y^2.\dfrac{1}{x^2y^2}}-255.\dfrac{1}{16}+2=\dfrac{289}{16}$
Vậy $\min A=\dfrac{289}{16} \Leftrightarrow x=y=\dfrac{1}{2}$