|
Giả sử mặt phẳng (P) có dạng:
$\begin{array}{l} Ax + By + Cz + D = 0\,\,({A^2} + {B^2} + {C^2} \ne 0) \Rightarrow \overrightarrow {{n_P}} = (A;B;C).\\ M \in (P) \Rightarrow 3B - 2C + D = 0\,\,(1)\\ (P)//d
\Rightarrow \overrightarrow{n_{(P)} } . \overrightarrow{u_d}=0 \Rightarrow {\rm A} + {\rm B} + 4C = 0\,\,(2)\\ d(d,(P)) = 3 \Leftrightarrow \frac{{|C + D|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }} = 3\\ \Rightarrow \left[ \begin{array}{l} B = - 2C\\ B = - 8C \end{array} \right. \end{array}$
TH1: $B = - 2C$, chọn $C = - 1,B = 2 \Rightarrow {\rm A} = 2,D = - 8 $ $\Rightarrow (P):2x + 2y - z - 8 = 0$ TH2: $B = - 8C$, chọn $C = 1,B = - 8 \Rightarrow {\rm A} = 4,D = 26 $ $\Rightarrow (P):4x - 8y + z + 26 = 0$
|