|
(E) : $ \frac{{{x^2}}}{4} + {y^2} = 1\,\,\,\,\,\,;\,\,\,\,\,{a^2} = 4$ $\Rightarrow a = 2\,\,;\,\,{b^2} = 1\Rightarrow \,b = 1\,\,;\,\,{c^2} = {a^2} - {b^2} = 3\, \Rightarrow c = \sqrt 3 $ + Áp dụng định lí côsin trong tam giác F1NF2: $ \begin{array}{l} {({F_1}{F_2})^2}\,\, = \,\,NF_1^2\, + \,NF_2^2\,\, - \,2N{F_1}N{F_2}.\cos {60^0}\\ \Leftrightarrow \,\,\,{({F_1}{F_2})^2}\,\, = \,\,{(\,N{F_1}\, + \,N{F_2})^2} - 2N{F_1}.N{F_2} - N{F_1}.N{F_2}\\ \Leftrightarrow \,\,N{F_1}.N{F_2}\,\, = \,\,\frac{4}{3}(\,{a^2} - {c^2}) = \frac{4}{3}\\ \Leftrightarrow \,\,{x^2}\,\, = \,\,\frac{{32}}{9}\,\,;\,\,{y^2} = \frac{2}{{18}} \end{array} $ Vậy có 4 điểm thỏa yêu cầu bài toán : $ {N_1}\left( {\frac{{4\sqrt 2 }}{3}\,,\,\frac{1}{3}} \right)\,;{N_2}\left( {\frac{{4\sqrt 2 }}{3}\,,\, - \frac{1}{3}} \right)\,;{N_3}\left( { - \frac{{4\sqrt 2 }}{3}\,,\,\frac{1}{3}} \right)\,;\,{N_4}\left( { - \frac{{4\sqrt 2 }}{3}\,,\, - \frac{1}{3}} \right) $
|