Cho tam giác $ABC$ thỏa mãn : $sinA+sinC=2sinB$
               $1/$ CMR: $tan\frac{A}{2} + tan\frac{C}{2} \ge \frac{{2\sqrt 3 }}{3}$
               $2/$ CMR: $\cos A + \cos C \le 1$
               $3/$ CMR: ${b^2} \ge 6rR$
$1/$       $\sin A + \sin C = 2\sin B$
      $\begin{array}{l}
 \Rightarrow 2\sin \frac{{A + C}}{2}c{\rm{os}}\frac{{A - C}}{2} = 4\sin \frac{B}{2}c{\rm{os}}\frac{B}{2}\\
 \Rightarrow c{\rm{os}}\frac{{A - C}}{2} = 2\cos \frac{{A + C}}{2}\\
 \Rightarrow c{\rm{os}}\frac{A}{2}c{\rm{os}}\frac{C}{2} + \sin \frac{A}{2}\sin \frac{C}{2} = 2\cos \frac{A}{2}c{\rm{os}}\frac{C}{2} - 2\sin \frac{A}{2}\sin \frac{C}{2}\\
 \Rightarrow c{\rm{os}}\frac{A}{2}c{\rm{os}}\frac{C}{2} = 3\sin \frac{A}{2}\sin \frac{C}{2}
\end{array}$
     $ \Rightarrow tan\frac{A}{2}tan\frac{C}{2} = \frac{1}{3}                                         (1)$
Theo bất đẳng thức Cosi ,ta có
              $tan\frac{A}{2}tan\frac{C}{2} \le \frac{1}{4}{(tan\frac{A}{2} + tan\frac{C}{2})^2}       (2)$
Từ $(1)(2)$ suy ra  ${(tan\frac{A}{2} + tan\frac{C}{2})^2} \ge \frac{4}{3}$ và do $tan\frac{A}{2} + tan\frac{C}{2} > 0$ nên :
               $tan\frac{A}{2} + tan\frac{C}{2} \ge \frac{{2\sqrt 3 }}{3} \Rightarrow dpcm$
Dấu $“=”$ xảy ra khi $ABC$ là tam giác đều
$2/$ Từ     
$\sin A + \sin C = 2\sin B \Rightarrow a + c = 2b \Rightarrow p = \frac{{3b}}{2}$
Ta có      $c{\rm{o}}{{\rm{s}}^2}\frac{B}{2} = \frac{{1 + \cos B}}{2} = \frac{{1 + \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}}}{2} = \frac{{{{(a + c)}^2} - {b^2}}}{{4ac}} = \frac{{p(p - b)}}{{ac}}$
Vì $p = \frac{{3b}}{2} \Rightarrow c{\rm{o}}{{\rm{s}}^2}\frac{B}{2} = \frac{{3{b^2}}}{{4ac}}$
Do đó $\cos B = 2{\cos ^2}B - 1 = \frac{{4{b^2}}}{{4ac}} - 1 \Rightarrow \cos B \ge \frac{{6{b^2}}}{{{{(a + c)}^2}}} - 1 = \frac{1}{2}$
Theo bất đẳng thức cơ bản : $\cos A + \cos B + \cos C \le \frac{3}{2}$, nên cùng với $\cos B \ge \frac{1}{2}$ suy ra $\cos A + \cos C \le 1$
Dấu $“=”$ xảy ra khi tam giác $ABC$ đều  
$3/$ Áp dụng công thức $R = \frac{{abc}}{{4S}},r = \frac{S}{p}$  ta có:
                         $\begin{array}{l}
{b^2} \ge 6rR\\
 \Leftrightarrow {b^2} \ge 6\frac{{abc}}{{4S}}\frac{S}{p}\\
 \Leftrightarrow {b^2} \ge \frac{{3ac}}{{2p}}(1)
\end{array}$
Vì $sinA+sinC=2sinB \Rightarrow a+c=2b$
Do đó $(1)$ tương đương              $\frac{{a + c}}{2} \ge \frac{{3ac}}{{a + c + \frac{{a + c}}{2}}}$
                                               $\begin{array}{l}
 \Leftrightarrow \frac{{a + c}}{2} \ge \frac{{2ac}}{{a + c}}\\
 \Leftrightarrow {(a + c)^2} \ge 4ac\\
 \Leftrightarrow {(a - c)^2} \ge 0(2)
\end{array}$
Vì $(2)$ đúng nên $(1)$ đúng, ta có (đpcm)
Dấu $“=”$ xảy ra khi tam giác $ABC$ đều
Nhận xét            ${b^2} \ge 6rR$
                      $\begin{array}{l}
 \Leftrightarrow 4{R^2}{\sin ^2}B \ge 6R.4R\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\\
 \Leftrightarrow 4{\sin ^2}\frac{B}{2}c{\rm{o}}{{\rm{s}}^2}\frac{B}{2} \ge 6\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\\
 \Leftrightarrow 2\sin \frac{B}{2}c{\rm{o}}{{\rm{s}}^2}\frac{B}{2} \ge 3\sin \frac{A}{2}\sin \frac{C}{2}
\end{array}$
                    $ \Leftrightarrow \frac{{\sin B}}{{c{\rm{os}}\frac{A}{2}c{\rm{os}}\frac{C}{2}}} \ge \frac{{3tan\frac{A}{2}tan\frac{C}{2}}}{{c{\rm{os}}\frac{B}{2}}}                        (*)$
Vì $a+c=2b$ nên $tan\frac{A}{2}tan\frac{C}{2} = \frac{1}{3}$
Vì thế (*) có dạng   $\sin B \ge \frac{{c{\rm{os}}\frac{A}{2}c{\rm{os}}\frac{C}{2}}}{{c{\rm{os}}\frac{B}{2}}}               (3)$
Do đó bài toán có thể ra là: Với điều kiện đã cho, chứng minh bất đẳng thức $(3)$

Thẻ

Lượt xem

722

Lý thuyết liên quan

Chat chit và chém gió
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: ..................... 11/5/2018 1:39:52 PM
  • vinhlyle: hi 11/10/2018 8:03:02 PM
  • ๖ۣۜBossღ: 3:00 AM 11/11/2018 10:17:11 PM
  • quanghungnguyen256: sao wweb cứ đăng nhập mãi nhĩ, k trả lời đc bài viết nữa 11/30/2018 4:35:45 PM
  • quanghungnguyen256: web nát r à 11/30/2018 4:36:19 PM
  • quanghungnguyen256: 11/11/2018 h là 30/11. oi web chắt k ai dùng r hả 11/30/2018 4:36:44 PM
  • quanghungnguyen256: rofum ngon thế mà sao admin lại k nâng cấp nhỡ 11/30/2018 4:37:07 PM
  • nguyenlena2611: talk_to_the_hand 12/24/2018 9:24:22 PM
  • nguyenlena2611: big_grinsurpriseblushing 12/24/2018 9:28:35 PM
  • Việt EL: ^^ 2/16/2019 8:37:21 PM
  • Việt EL: he lô he lô 2/16/2019 8:37:34 PM
  • Việt EL: y sờ e ny guan hiar? 2/16/2019 8:38:15 PM
  • Việt EL: èo 2/16/2019 8:38:32 PM
  • Việt EL: éo có ai 2/16/2019 8:40:48 PM
  • dfgsgsd: Hế lô 2/21/2019 9:52:51 PM
  • dfgsgsd: Lờ ôn lôn huyền ..... 2/21/2019 9:53:01 PM
  • dfgsgsd: Cờ ắc cắc nặng.... 2/21/2019 9:53:08 PM
  • dfgsgsd: Chờ im.... 2/21/2019 9:53:12 PM
  • dfgsgsd: Dờ ai dai sắc ...... 2/21/2019 9:53:23 PM
  • dfgsgsd: ờ ưng nưng sắc.... 2/21/2019 9:53:37 PM
  • dfgsgsd: Mờ inh minh huyền.... đờ ep nặng... trờ ai... quờ a sắc.... đờ i.... 2/21/2019 9:54:11 PM
  • nln: winking 2/28/2019 9:02:14 PM
  • nln: big_grin 2/28/2019 9:02:16 PM
  • nln: smug 2/28/2019 9:02:18 PM
  • nln: talk_to_the_hand 2/28/2019 9:02:20 PM
  • nln: Specialise 2/28/2019 9:51:54 PM
  • nlnl: But they have since become two much-love 2/28/2019 10:03:10 PM
  • dhfh: sad 3/2/2019 9:27:26 PM
  • ๖ۣۜNatsu: allo 3/3/2019 11:39:32 PM
  • ffhfdh: reyeye 3/5/2019 8:53:26 PM
  • ffhfdh: ủuutrr 3/5/2019 8:53:29 PM
  • dgdsgds: ujghjj 3/24/2019 9:12:47 PM
  • ryyty: ghfghgfhfhgfghgfhgffggfhhghfgh 4/9/2019 9:34:48 PM
  • gdfgfd: gfjfjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj 4/14/2019 9:53:38 PM
  • gdfgfd: sadsadsadsadsadsad 4/14/2019 9:59:30 PM
  • fdfddgf: trâm anh 4/17/2019 9:40:50 PM
  • gfjggg: a lot of advice is available for college leavers 5/10/2019 9:32:12 PM
  • linhkim2401: big_hug 7/3/2019 9:35:43 AM
  • ddfhfhdff: could you help me do this job 7/23/2019 10:29:49 PM
  • ddfhfhdff: i don't know how to 7/23/2019 10:30:03 PM
  • ddfhfhdff: Why you are in my life, why 7/23/2019 10:30:21 PM
  • ddfhfhdff: Could you help me do this job? I don't know how to get it start 7/23/2019 10:31:45 PM
  • ddfhfhdff: big_grinwhistling 7/23/2019 10:32:50 PM
  • ddfhfhdff: coukd you help me do this job 7/23/2019 10:39:22 PM
  • ddfhfhdff: i don't know how to get it start 7/23/2019 10:39:38 PM
  • huy31012002:9/13/2019 10:43:52 PM
  • huongpha226: hello 11/29/2019 8:22:41 PM
  • hoangthiennhat29: pig 4/2/2020 9:48:11 PM
  • cutein111: . 4/9/2020 9:23:18 PM
  • cutein111: . 4/9/2020 9:23:19 PM
  • cutein111: . 4/9/2020 9:23:20 PM
  • cutein111: . 4/9/2020 9:23:22 PM
  • cutein111: . 4/9/2020 9:23:23 PM
  • cutein111: hello 4/9/2020 9:23:30 PM
  • cutein111: mấy bạn 4/9/2020 9:23:33 PM
  • cutein111: mấy bạn cần người ... k 4/9/2020 9:23:49 PM
  • cutein111: mik sẽ là... của bạn 4/9/2020 9:23:58 PM
  • cutein111: hihi 4/9/2020 9:24:00 PM
  • cutein111: https://www.youtube.com/watch?v=EgBJmlPo8Xw 4/9/2020 9:24:12 PM
  • nhdanfr: Hello 9/17/2020 8:34:26 PM
  • minhthientran594: hi 11/1/2020 10:32:29 AM
  • giocon123fa: hi mọi ngừi :33 1/31/2021 10:31:56 PM
  • giocon123fa: call_me 1/31/2021 10:32:46 PM
  • giocon123fa: không còn ai nữa à? 1/31/2021 10:36:35 PM
  • giocon123fa: toi phải up cái này lên face để mọi người vào chơilaughing) 1/31/2021 10:42:37 PM
  • manhleduc712: hí ae 2/23/2021 8:51:42 AM
  • vaaa: f 3/27/2021 9:40:49 AM
  • vaaa: fuck 3/27/2021 9:40:57 AM
  • L.lawiet: l 6/4/2021 1:26:16 PM
  • tramvin1: . 6/14/2021 8:48:20 PM
  • dothitam04061986: solo ff ko 7/7/2021 2:47:36 PM
  • dothitam04061986: ai muốn xem ngực e ko ạ 7/7/2021 2:49:36 PM
  • dothitam04061986: e nứng 7/7/2021 2:49:52 PM
  • Phương ^.^: ngủ hết rồi ạ? 7/20/2021 10:16:31 PM
  • ducanh170208: hi 8/15/2021 10:23:19 AM
  • ducanh170208: xin chao mọi người 8/15/2021 10:23:39 AM
  • nguyenkieutrinh: hiu lo m.n 9/14/2021 7:30:55 PM
  • nguyenngocha651: Xin chào tất cả các bạn 9/20/2021 3:13:46 PM
  • nguyenngocha651: Có ai onl ko, Ib với mik 9/20/2021 3:14:08 PM
  • nguyenngocha651: Còn ai on ko ạ 9/20/2021 3:21:34 PM
  • nguyenngocha651: ai 12 tủi, sinh k9 Ib Iw mik nhố 9/21/2021 10:22:38 AM
Đăng nhập để chém gió cùng mọi người
  • dvthuat
  • hoàng anh thọ
  • nhungtt0312
  • Xusint
  • tiendat.tran.79
  • babylove_yourfriend_1996
  • thaonguyenxanh1369
  • hoangthao0794
  • zzzz1410
  • watashitipho
  • HọcTạiNhà
  • Cá Hêu
  • peonycherry
  • phanqk1996
  • giothienxung
  • khoaita567
  • nguyentranthuylinhkt
  • maimatmet
  • minh.mai.td
  • quybalamcam
  • m_internet001
  • bangtuyettrangsocola
  • chizjzj
  • vuivequa052
  • haibanh237
  • sweetmilk1412
  • panhhuu
  • mekebinh
  • Nghịch Thuỷ Hàn
  • Lone star
  • LanguaeofLegend
  • huongduong2603
  • i_love_you_12387
  • a ku
  • heohong_congchua
  • impossitable111
  • khanh
  • ๖ۣۜJinღ๖ۣۜKaido
  • huynhhoangphu.10k7
  • namduong2016
  • vycreepers
  • Bảo Phươngg
  • Yurika Yuki
  • tinysweets98
  • Thùy Trang
  • Hàn Thiên Dii
  • ๖ۣۜConan♥doyleღ
  • LeQuynh
  • thithuan27
  • huhunhh
  • ๖ۣۜDemonღ
  • nguyenxinh6295
  • phuc642003
  • diephuynh2009
  • Lê Giang
  • Han Yoon Min
  • ...
  • thuyvan
  • Mặt Trời Bé
  • DoTri69
  • bac1024578
  • Hạ Vân
  • thuong0122
  • nhakhoahoc43
  • tuanngo.apd
  • Đức Vỹ
  • ๖ۣۜCold
  • Lethu031193
  • salihova.eldara