|
$1)$ đặt $a = {4^{{{\sin }^2}x}} + {4^{co{s^2}x}},a > 0$ ta có : $\begin{array}{l} \,\,\,\,\,\,\,\left( {6{y^2} + 2y} \right)a = 25{y^2} + 6y + 1\\ \Leftrightarrow \left( {25 - 6a} \right){y^2} + 2\left( {3 - a} \right)y + 1 = 0 \end{array}$ • Với $a = \frac{{25}}{6}$ ta có $2\left( {3 - \frac{{25}}{6}} \right)y + 1 = 0\,\,\, \Leftrightarrow \,\,\,y = \frac{3}{7}$ Khi đó $y\,\sin \,x = \frac{3}{7}\sin \,x = {\log _2}\left| {\frac{{3\sin x}}{{16}}} \right| \le {\log _2}\frac{3}{{16}} < - 2$ $ \Rightarrow \,\,\sin \,x < - \frac{7}{3}$ vô lý. $a \ne \frac{{25}}{6}:\,\,\,\,\,\Delta ' = {a^2} - 16 \ge 0\,\,\,\, \Leftrightarrow \left[ \begin{array}{l} a \ge 4\,\,\,\,\,\,\left( {a \ne \frac{{25}}{6}} \right)\\ a \le - 4\,\,\,\,(l) \end{array} \right.$ Suy ra : ${y_{1,2}} = \frac{{a - 3 \pm \sqrt {{a^2} - 16} }}{{25 - 6a}}$ Hệ phương trình trở thành: $\left\{ \begin{array}{l} y\,\sin \,x = {\log _2}\left| {\frac{{y\,\sin \,x}}{{1 + 3y}}} \right|\\ y = \frac{{{{2.4}^{{{\sin }^2}x}} - 3}}{{25 - 6\left( {{4^{{{\sin }^2}x}} + {4^{co{s^2}x}}} \right)}} \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(I)$ Hoặc $\left\{ \begin{array}{l} y\,\sin \,x = {\log _2}\left| {\frac{{y\,\sin \,x}}{{1 + 3y}}} \right|\\ y = \frac{{{{2.4}^{co{s^2}x}} - 3}}{{25 - 6\left( {{4^{{{\sin }^2}x}} + {4^{co{s^2}x}}} \right)}} \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(II)$ Xét ($I$) : $\begin{array}{l} {\log _2}\left| {\frac{{y\,\sin \,x}}{{1 + 3y}}} \right| = {\log _2}\left| {\sin \,x} \right| - {\log _2}\left| {3 + \frac{1}{y}} \right|\\ = {\log _2}\left| {\sin \,x} \right| - {\log _2}\left| {3 + \frac{{25 - 6\left( {{4^{{{\sin }^2}x}} + {4^{co{s^2}x}}} \right)}}{{{{2.4}^{{{\sin }^2}x}} - 3}}} \right|\\ = {\log _2}\left| {\sin \,x} \right| - {\log _2}{2.4^{co{s^2}x}} = {\log _2}\left| {\sin \,x} \right| - 1 - {\log _2}{4^{co{s^2}x}} \le - 1 \end{array}$ Suy ra : $y\,\sin \,x \le - 1$ Mặt khác do $\left| y \right| \le 1\,\, \Rightarrow \,\,\,\left| {y\,\sin \,x} \right| \le 1\,\,\,\,
\Rightarrow \,\,\,y\,\sin \,x \ge - 1$ Từ đó suy ra : $\left\{ \begin{array}{l} y\,\sin \,x = - 1\\ {\log _2}\left| {\sin \,x} \right| - 2co{s^2}x = 0 \end{array} \right.$ Vì $\begin{array}{l} {\log _2}\left| {\sin \,x} \right| \le 0\\ - 2co{s^2}x \le 0 \end{array}$ nên hệ tương đương với : $\left\{ \begin{array}{l} y\,\sin \,x = - 1\\ {\log _2}\left| {\sin \,x} \right| = 0\\ cos\,x = 0 \end{array} \right.\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\,\,\,\left\{ \begin{array}{l} \left| {\sin \,x} \right| = 1\\ y\,\sin \,x = - 1 \end{array} \right.\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\,\,\left[ \begin{array}{l} \left\{ \begin{array}{l} \sin \,x = - 1\\ y = 1 \end{array} \right.\\ \left\{ \begin{array}{l} \sin \,x = 1\\ y = - 1 \end{array} \right. \end{array} \right.$ Thử lại : - Với $\left\{ \begin{array}{l} \sin \,x = - 1\\ y = 1 \end{array} \right.$ thế vào hệ ta có: $\left\{ \begin{array}{l} - 1 = {\log _2}\frac{1}{4}\\ 8.5 = 32 \end{array} \right.$ Hệ không thỏa mãn . - Với $\left\{ \begin{array}{l} \sin \,x = 1\\ y = - 1 \end{array} \right.$ ta có: $\left\{ \begin{array}{l} - 1 = {\log _2}\frac{1}{2}\\ 4.5= 20 \end{array} \right.$ hệ thỏa mãn. Ta có: $\left\{ \begin{array}{l} \sin \,x = 1\\ y = - 1 \end{array} \right.$ Xét $(II)$ : Giải tương tự ta có: $\left\{ \begin{array}{l} y\,\sin \,x = - 1\\ {\log _2}\left| {\sin \,x} \right| = 0\\ \sin x = 0 \end{array} \right.$ Hệ này vô nghiệm. Vậy : nghiệm của hệ là: $\left\{ \begin{array}{l} x = k\pi \\ y = 1 \end{array} \right.,\,\,\,\,\,\,\,\,\,\,\,\,k \in Z\,\,\,\,\,\,\,$
|