|
a) Ta có $M\in mp(ABC)\Leftrightarrow \overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AM} $ đồng phẳng $\Leftrightarrow [\overrightarrow{AB},\overrightarrow{AC} ].\overrightarrow{AM}=0 (*) $ $\overrightarrow{AB}=(2;-1;-4), \overrightarrow{AC}=(1;0;-3), \overrightarrow{AM}=(x; y-1;z-3) $ $[\overrightarrow{AB},\overrightarrow{AC} ]=\left( {\left| \begin{array}{l} - 1\\ 0 \end{array} \right.\,\,\,\,\left. \begin{array}{l} 4\\ - 3 \end{array} \right|;\left| \begin{array}{l} - 4\\ 3 \end{array} \right.\,\,\,\,\,\left. \begin{array}{l} 2\\ 1 \end{array} \right|;\left| \begin{array}{l} 2\\ 1 \end{array} \right.\,\,\,\,\,\left. \begin{array}{l} - 1\\ 0 \end{array} \right|} \right) = (3;2;1)$ $(*)\Leftrightarrow 3x+2y-2+z-3=0\Leftrightarrow 3x+2y+z-5=0$
b) Ta có $\left\{ \begin{array}{l} \overrightarrow {AH} \bot \overrightarrow {BC} \\ \overrightarrow {BH} \bot \overrightarrow {AC} \\ H \in mp(ABC) \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \overrightarrow {AH} \bot \overrightarrow {BC} = 0\\ \overrightarrow {BH} \bot \overrightarrow {AC} = 0\\ \overrightarrow {AB} ,\,\overrightarrow {AC} ,\,\overrightarrow {AH} đồng phẳng \end{array} \right. (**)$
Với $\overrightarrow{BH}=(x-2;y;z+1) $ $(**) \Leftrightarrow \left\{ \begin{array}{l} - x + y - 1 + z - 3 = 0\\ x - 2 - 3z - 3 = 0\\ 3x + 2y + z - 5 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x - y - z = - 4\\ x - 3z = 5\\ 3x + 2y + z = 5 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = - 1\\ y = 5\\ z = - 2 \end{array} \right.$ Vậy $H(-1;5;-2)$
|
|
Đăng bài 29-05-12 10:52 AM
|
|