Cho tứ diện $S.ABC$ có $ABC$ là tam giác đều cạnh bằng $a.SA=a$ và vuông góc với mặt phẳng $(ABC)$. Gọi $M$ là một điểm tùy ý trên cạnh $AC,(\alpha)$ là mặt phẳng qua $M$ và vuông góc với $AC$ $a.$ Tùy theo vị trí của điểm $M$ trên cạnh $AC$, có nhận xét gì về thiết diện tạo bởi $(\alpha)$ với tứ diện $S.ABC$ $b.$ Đặt $CM=x$ với $0<x<a$.Tính diện tích $S$ của thiết diện trên theo $a,x$ và xác định $x$ để diện tích này có giá trị lớn nhất. Tính diện tích lớn nhất đó
|