A. TÓM TẮT LÝ THUYẾT$1.$ Vectơ pháp tuyến của mp $(P)$: $\overrightarrow{n} \ne \overrightarrow{0}$ là vectơ pháp tuyến của...
|
|
|
Cho hình chóp tứ giác đều $S.ABCD$ có tất cả các cạnh đáy và cạnh bên đều bằng $a$. Gọi $A',B',C',D'$ lần lượt là trung điểm của $SA,SB,SC,SD$. a) Chứng minh rằng các điểm $A,B,C,D,A',B',C',D'$ cùng thuộc mặt cầu $(S)$. b) Tìm bán kính mặt cầu $(S)$.
|
|
|
|
|
|
|
|
|
|
|
Trong mặt phẳng $(P)$ cho hình vuông $ABCD$. Trên đường thẳng $Ax$ vuông góc với $(P)$ lấy một điểm $S$ bất kì. Dựng mặt phẳng $(Q)$ qua $A$ và vuông góc với $SC$. Mặt phẳng $(Q)$ cắt $SB,SC,SD$ lần lượt tại $B',C',D'$. Chứng minh rằng các điểm $A,B,C,D,B',C',D'$ cùng nằm trên một mặt cầu cố định.
|