|
a) Ta có : cosx<1,∀x∈(0;π2]⇒t∫0cosxdx<t∫0dt,∀t∈(0;π2] ⇒sint<t,∀t∈(0;π2]⇒x∫0sintdt<x∫0tdt,∀t∈(0;π2] ⇒1−cosx<x22,∀x∈(0;π2] ⇒t∫0(1−cosx)dx<t∫0x22dx,∀t∈(0;π2] ⇒t−sint<t36,∀t∈(0;π2]⇒sint>t−t36,∀t∈(0;π2] (1) ⇒x∫0sintdt>x∫0(t−t36)dt,∀x∈(0;π2] ⇒1−cosx>x22−x424,∀x∈(0;π2] ⇒cosx<1−x22+x424,∀x∈(0;π2] (2) Từ (1) và (2) ⇒(sinxx)3>(1−x26)3≥1−x22+x412−x6216 >1−x22+x424>cosx,∀x∈(0;π2] Vậy : (sinxx)3>cosx,∀x∈(0;π2] (3) b) Từ (3) ⇒cosxsin3x<1x3,∀x∈(0;π2] ⇒π2∫xcostsin3tdt≤π2∫xdtt3,∀x∈(0;π2] ⇒1sin2x−1x2≤1−4π2,∀x∈(0;π2] Dấu "="⇔x=π2⇒P≤3−12π2,∀x,y,z∈(0;π2] Dấu "="⇔x=y=z=π2 vậy MaxP=3−12π2.
|