a)Cho $f$ liên tục trên $[0;\pi ]$. Chứng minh rằng : $\int\limits_{0}^{\pi } xf(\sin x)dx = \pi \int\limits_{0}^{\frac{\pi}{2} }f (\sin x) dx.$ b) Tính $M = \int\limits_{0}^{\pi }\frac{x \sin x }{1 + \cos ^2x}dx.$ c) Tính $\mathop {\lim }\limits_{}\sum_n $ trong đó: $ \sum_n = \frac{2010}{n^2}\left ( \frac{\sin \frac{\pi}{n} }{1 + \cos ^2 \frac{\pi }{n} } + \frac{2 \sin \frac{\pi}{n} }{1 + \cos ^2 \frac{2\pi}{n} } + ...+ \frac{n \sin \frac{n\pi}{n} }{1+\cos ^2 \frac{n \pi }{n} } \right ) $
|