Giải bất phương trình : $\sqrt {\frac{1}{2} + \sin \,x} \left[ {{{\log }_{\frac{3}{2} + \sin x}}\left( {{{\sin }^2}x + \frac{{6\sqrt 3 + 9}}{4}} \right) - 2} \right] \ge 0\,\,\,\,\,\,\,\,\,(1)$
|
Giải bất phương trình : ${\log _{cos\,x}}{\log _{\sin \,x}}\left( {\sin \,x + cos\,2x} \right) > 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$
|
Giải bất phương trình : ${\log _{cos\,x}}{\log _{\sin \,x}}tan\,x > 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$
|
Giải bất phương trình : ${\log _{tanx}}\sin \,x > 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$
|
|
Giải các bất phương trình : $\begin{array}{l} 1)\,\,\,{\log _2}\left( {\sqrt {{x^2} - 4x} + 3} \right) > {\log _{\frac{1}{2}}}\frac{2}{{\sqrt {{x^2} - 4x} + \sqrt {x + 1} + 1}} + 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,\,{\log _{\frac{1}{3}}}\left( {\sqrt {9x - {x^2}} + 3} \right) > {\log _3}\frac{{27}}{{\sqrt {9x - {x^2}} + \sqrt {5 - {x^2}} }} - 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
|
Giải các bất phương trình : $\begin{array}{l} 1)\,\,\,\,\,\frac{{{{\log }_5}{{\left( {{x^2} - 4x - 11} \right)}^2} - {{\log }_{11}}{{\left( {{x^2} - 4x - 11} \right)}^3}}}{{2 - 5x - 3{x^2}}} \ge 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,\,\,\frac{{{{\log }_2}{{\left( {{x^2} - 2x - 7} \right)}^5} - {{\log }_3}{{\left( {{x^2} - 2x - 7} \right)}^8}}}{{3{x^2} - 13x + 4}} \le 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
|
Giải các bất phương trình : $\begin{array}{l} 1)\,\,\,\,\,{\log _3}\left( {5{x^2} + 6x + 1} \right) \le 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,\,\,{\log _{12}}\left( {6{x^2} - 48x + 54} \right) \le 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\\ 3)\,\,\,\,{\log _{21}}\left( {{x^2} + 2x - 3} \right) \le 1\,\,\,\\ 4)\,\,\,\,{\log _2}\left( {{x^2} - 4x - 5} \right) \le 4 \end{array}$
|
|
|
Giải bất phương trình : $\frac{1}{{{{\log }_{\frac{1}{3}}}\sqrt {2{x^2} - 2x + 1} }} > \frac{1}{{{{\log }_{\frac{1}{3}}}\left( {x + 1} \right)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$
|
|
|
|
|