Giải và biện luận theo tham số $a$ : $\begin{array}{l} 1)\,\,{a^2} - {9^{x + 1}} - 8a{.3^x} > 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,{a^2} - {2.4^{x + 1}} - a{.2^{x + 1}} > 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
|
Tìm các giá trị $m$ để bất phương trình sau đây có nghiệm: $\begin{array}{l} 1)\,\,\,{3^{2x + 1}} - \left( {m + 3} \right){3^x} - 2\left( {m + 3} \right) < 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,{4^x} - \left( {2m + 1} \right){2^x} + {m^2} + m \ge 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
|
Cho bất phương trình : $\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{25^x} - \left( {2m + 5} \right){.5^x} + {m^2} + 5 > 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$ Xác định $m$ để bất phương trình ($1$) nghiệm đúng $\forall x \in \,R\,$
|
Tìm $m$ để mỗi bất phương trình sau đây có nghiệm : $\begin{array}{l} 1)\,\,\,{4^x} - {5.2^x} + m \le 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3)\,\,\,{9^x} + m{.3^x} - 1 < 0\\ 2)\,\,{4^x} + {5.2^x} + m > 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4)\,\,{9^x} + m{.3^x} + 1 \le 0 \end{array}$
|
|
|
|
|
|
|
|
Giải các bất phương trình: $\begin{array}{l} 1)\,\,\,{\left( {\sqrt 2 + 1} \right)^{\frac{{6x - 6}}{{x + 1}}}} \le {\left( {\sqrt 2 - 1} \right)^{ - x}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,{\left( {\sqrt 5 + 2} \right)^{x - 1}} \ge {\left( {\sqrt 5 - 2} \right)^{\frac{{x - 1}}{{x + 1}}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)\, \end{array}$
|
|
|
|
Đăng bài 02-05-12 05:01 PM
|
Đăng bài 27-04-12 08:33 AM
|
|
Giải bất phương trình :
${x^{{{\log }_a}x + 1}} > {a^2}x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$
|
|
|
|
Giải và biện luận theo tham số $a$ : $\begin{array}{l} 1)\,\,{a^2} - {9^{x + 1}} - 8a{.3^x} > 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,{a^2} - {2.4^{x + 1}} - a{.2^{x + 1}} > 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
|
Tìm các giá trị $m$ để bất phương trình sau đây có nghiệm : $\begin{array}{l} 1)\,\,\,{3^{2x + 1}} - \left( {m + 3} \right){3^x} - 2\left( {m + 3} \right) < 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,{4^x} - \left( {2m + 1} \right){2^x} + {m^2} + m \ge 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
|
|
Tìm $m$ để mỗi bất phương trình sau đây có nghiệm: $\begin{array}{l} 1)\,\,\,{4^x} - {5.2^x} + m \le 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3)\,\,\,{9^x} + m{.3^x} - 1 < 0\\ 2)\,\,{4^x} + {5.2^x} + m > 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4)\,\,{9^x} + m{.3^x} + 1 \le 0 \end{array}$
|
|
|
Giải các bất phương trình :
$\begin{array}{l} 1)\,\,\,\,\,\,{\left( {{2^x} + {{3.2}^{ - x}}} \right)^{2{{\log }_2}x - {{\log }_2}\left( {x + 6} \right)}} > 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,\,\,\,\,{\left( {{{4.3}^x} + {3^{ - x}}} \right)^{3{{\log }_3}\left( {x - 1} \right) - {{\log }_3}\left( {x - 1} \right)\left( {2x + 1} \right)}} > 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
|
Giải các bất phương trình :
$\begin{array}{l} 1)\,\,\,\log _2^2\left( {2 + x - {x^2}} \right) + 3{\log _{\frac{1}{2}}}\left( {2 + x - {x^2}} \right) + 2 \le 0\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,{\log _{x + 1}}{\left( {{x^2} + x - 6} \right)^2} \ge 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)\\ 3)\,\,\,{\log _{9{x^2}}}\left( {6 + 2x - {x^2}} \right) \le \frac{1}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(3)\\ 4)\,\,\,{9^{\sqrt {{x^2} - 3} }} + 3 <28. {3^{\sqrt {{x^2} - 3} - 1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(4) \end{array}$
|
|
Giải các bất phương trình : $\begin{array}{l} 1)\,\,\,\,{\log _{\frac{1}{{\sqrt 5 }}}}\left( {{6^{x + 1}} - {{36}^x}} \right) \ge - 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,\,{\log _{\frac{1}{{\sqrt 6 }}}}\left( {{5^{x + 1}} - {{25}^x}} \right) \ge - 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
|
Giải các bất phương trình :
$\begin{array}{l} 1){\left( {{x^2} + x + 1} \right)^x} < 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2){\left( {x - 1} \right)^{{x^2} - 6x + 8}} > 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
|
|
|
|
|
Giải các bất phương trình :
$\begin{array}{l} 1)\,\,\,{\left( {\sqrt 2 + 1} \right)^{\frac{{6x - 6}}{{x + 1}}}} \le {\left( {\sqrt 2 - 1} \right)^{ - x}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,{\left( {\sqrt 5 + 2} \right)^{x - 1}} \ge {\left( {\sqrt 5 - 2} \right)^{\frac{{x - 1}}{{x + 1}}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)\, \end{array}$
|
|
|
|
|
Giải bất phương trình : $\frac{{{4^x} + 2x - 4}}{{x - 1}} \le 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$
|
Giải các bất phương trình : $\begin{array}{l} 1)\,\,\sqrt {2.\left( {{5^x} + 24} \right)} - \sqrt {\left( {{5^x} - 7} \right)} \ge \sqrt {\left( {{5^x} + 7} \right)} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,\sqrt {{{13}^x} - 5} \le \sqrt {2\left( {{{13}^x} + 12} \right)} - \sqrt {{{13}^x} + 5} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
|
|
Giải bất phương trình : $\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{6^{\log _6^2x}} + {x^{{{\log }_6}x}} \le 12\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$
|
|
|
|
|