|
|
|
|
|
|
|
Giải bất phương trình : $\left( {3 + \sqrt {6x - {x^2} - 8} } \right)\left( {\frac{2}{x} - 1} \right) \ge \left( {3 + \sqrt {{x^2}-6x + 8} } \right){\log _x}\frac{x}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$
|
Giải các bất phương trình : $\begin{array}{l} 1)\,\,\,\left( {\sqrt {{x^2} - 4x + 3} + 1} \right){\log _5}\frac{x}{5} + \frac{1}{x}\left( {\sqrt {8x - 2{x^2} - 6} + 1} \right) \le 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,\,\sqrt {{x^2} - 7x + 10} + 9{\log _4}\frac{x}{8} \ge 2x + \sqrt {14x - 20 - 2{x^2}} - 13\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
|
|
|
Giải các bất phương trình : $\begin{array}{l} 1)\,\,\sqrt {2.\left( {{5^x} + 24} \right)} - \sqrt {\left( {{5^x} - 7} \right)} \ge \sqrt {\left( {{5^x} + 7} \right)} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,\sqrt {{{13}^x} - 5} \le \sqrt {2\left( {{{13}^x} + 12} \right)} - \sqrt {{{13}^x} + 5} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
|