|
Điều kiện: $ \sin 2x \ne 0\,;\,{\mathop{\rm t}\nolimits} {\rm{anx}} \ne - 1$ (**). Ta có: $ \begin{array}{l} \frac{{c{\rm{os}}2x}}{{1 + {\mathop{\rm t}\nolimits} {\rm{anx}}}} = \frac{{c{\rm{o}}{{\rm{s}}^2}x - {{\sin }^2}x}}{{1 + \frac{{{\mathop{\rm s}\nolimits} {\rm{inx}}}}{{\cos x}}}} = \frac{{\cos x\left( {c{\rm{o}}{{\rm{s}}^2}x - {{\sin }^2}x} \right)}}{{\cos x + {\mathop{\rm s}\nolimits} {\rm{inx}}}} = \cos x(\cos x - {\mathop{\rm s}\nolimits} {\rm{inx}})\\
\end{array} $ Do đó: $\begin{array}{l} \left( * \right) \Leftrightarrow cotx - 1 = \left( {c{\rm{o}}{{\rm{s}}^2}x - \sin {\rm{x}}\cos x} \right) + {\sin ^2}x - \frac{1}{2}\sin 2x\\ \Leftrightarrow \frac{{\cos x - {\mathop{\rm s}\nolimits} {\rm{inx}}}}{{{\mathop{\rm s}\nolimits} {\rm{inx}}}} = 1 - \sin 2x\\ \Leftrightarrow \cos x - {\mathop{\rm s}\nolimits} {\rm{inx}} = {\mathop{\rm s}\nolimits} {\rm{inx}}{\left( {\cos x - {\mathop{\rm s}\nolimits} {\rm{inx}}} \right)^2}\\ \Leftrightarrow \left[ \begin{array}{l} \cos x - {\mathop{\rm s}\nolimits} {\rm{inx}} = 0\\ 1 = {\mathop{\rm s}\nolimits} {\rm{inx}}\left( {\cos x - {\mathop{\rm s}\nolimits} {\rm{inx}}} \right) \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} {\mathop{\rm t}\nolimits} {\rm{anx}} = 1\\ \frac{1}{{c{\rm{o}}{{\rm{s}}^2}x}} = \frac{{{\mathop{\rm s}\nolimits} {\rm{inx}}}}{{\cos x}} - {\tan ^2}x\,\,\,({\rm{do}}\,\,\cos x \ne 0) \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} x = \frac{\pi }{4} + k\pi \,\,(k \in Z\,)\\ 2{\tan ^2}x - {\mathop{\rm t}\nolimits} {\rm{anx}} + 1 = 0\,(\,{\rm{VN}}) \end{array} \right.\\ \Leftrightarrow x = \frac{\pi }{4} + k\pi ;k \in Z \end{array}$ Đối chiếu với điều kiện (**), ta có nghiệm cần tìm: $x = \frac{\pi }{4} + k\pi ;k \in Z$
|