$AB$ là đường vuông góc chung của hai đường thẳng $x, y$ chéo nhau, $A$ thuộc $x, B$ thuộc y. Đặt độ dài $AB = d$.   $M$ là một điểm thay đổi thuộc $x, N$ là một điểm thay đổi thuộc $y$. Đặt $AM = m, BN $= n\((m \ge 0,n \ge 0)\). Giả sử ta luôn có \({m^2} + {n^2} = k > 0\), $k$ không đổi.
$1.$ Xác định $m, n$ để độ dài đoạn thẳng $MN$ đạt giá trị lớn nhất, nhỏ nhất.
$2. $Trong trường hợp hai đường thẳng $x, y$ vuông góc với nhau và \(mn \ne 0\), hãy xác định $m, n $ ( theo $k$ và $d$) để thể tích tứ diện $ABMN$ đạt giá trị lớn nhất và tính giá trị đó.


$1$. Kí hiệu \(\varphi\)  là  góc  giữa  hai  đường  thẳng  $x, y$  đã  cho. Do  giả  thiết $ x, y $ chéo  nhau $\Rightarrow 0 < \varphi  \le \frac{\pi }{2}$

* Tính $MN:$

- Nếu $m = 0$ thì \(M \equiv A\) và \(k = {m^2} + {n^2} = {n^2}\)\( \Rightarrow M{N^2} = A{N^2} = A{B^2} + B{D^2} = {d^2} + {n^2} = {d^2} + k\)
Tương tự, nếu $n = 0$ thì \(M{N^2} = {d^2} + k\)

- Nếu $m, n > 0$ thì
$M{N^2} = \overrightarrow {M{N^2}}  = {\left( {\overrightarrow {MA}  + \overrightarrow {AB}  + \overrightarrow {BN} } \right)^2} = {\left( {\overrightarrow {AB}  + \overrightarrow {BN}  - \overrightarrow {AM} } \right)^2}$
           $ = {d^2} + {n^2} + {m^2} - 2\overrightarrow {BN.} \overrightarrow {AM} = {d^2} + k - 2mn\cos \left( {\overrightarrow {AM,} \overrightarrow {BN} } \right)$
$\Rightarrow $\(M{N^2} = \left\{ \begin{array}{l}
{d^2} + k     khi    m.n=0\\
{d^2} + k - 2mn\cos \varphi    khi    m.n>0  và \left( {\overrightarrow {AM,} {\rm{ }}\overrightarrow {BN} } \right) = \varphi \\
{d^2} + k + 2mn\cos \varphi   khi    m.n>0  và \left( {\overrightarrow {AM} ,{\rm{ }}\overrightarrow {BN} } \right) = \pi  - \varphi
\end{array} \right.\)    

* Giá trị lớn nhất, bé nhất của $MN.$

- Nếu \(\varphi  = \frac{\pi }{2}\) thì \(c{\rm{os}}\varphi  = 0 \Rightarrow M{N^2} = {d^2} + k  {\rm{ }}\forall m,n  {\rm{ sao  cho   }}{{\rm{m}}^2} + {n^2} = k\)
\( \Rightarrow \max MN = \min MN = \sqrt {{d^2} + k {\rm{ }}}\)   đạt  được  với  mọi  $m, n$   thỏa  mãn  điều  kiện  \({m^2} + {n^2} = k\)

- Nếu \(0 < \varphi  < \frac{\pi }{2}\) thì \(c{\rm{os}}\varphi  > 0,   2mn \le {m^2} + {n^2} = k\)
(đẳng thức xảy ra khi \(m = n = \sqrt {\frac{k}{2}} )\) nên
\({d^2} + k - k\cos \varphi  \le {d^2} + k - 2mn\cos \varphi < {d^2} + k \)
                              \(< {d^2} + k + 2mn\cos \varphi  \le {d^2} + k + k\cos \varphi   \)
Nên:
$\max MN = \sqrt {{d^2} + k + k\cos \varphi }$  đạt  được khi  $m = n = \sqrt {\frac{k}{2}} {\rm{ }} và \left( {\overrightarrow {AM,} {\rm{ }}\overrightarrow {BN} } \right) = \pi  - \varphi $
\(\min MN = \sqrt {{d^2} + k - k\cos \varphi }\)  đạt  được khi  \(m = n = \sqrt {\frac{k}{2}} và \left( {\overrightarrow {AM,} {\rm{ }}\overrightarrow {BN} } \right) = \varphi \)

$2$.  Do \(x \bot y\) và AB là đường vuông góc chung của $x, y$ nên \(AM \bot \left( {ABN} \right)\) và  \(\Delta ABN\) vuông ở $B$ \( \Rightarrow {V_{ABMN}} = \frac{1}{3}AM.S_{ABN} = \frac{1}{3}AM.\frac{1}{2}AB.BN = \frac{1}{6}.m.n.d \le \frac{1}{6}\left( {\frac{{{m^2} + {n^2}}}{2}} \right).d = \frac{{kd}}{{12}}\)
Đẳng thức xảy ra  \( \Leftrightarrow m = m = \sqrt {\frac{k}{2}}
 Vậy \max {V_{ABMN}} = \frac{{kd}}{{12}}\) đạt được khi $\Leftrightarrow m=n=\sqrt{\frac{k}{2}}$

Thẻ

Lượt xem

952

Lý thuyết liên quan

Chat chit và chém gió
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: ..................... 11/5/2018 1:39:52 PM
  • vinhlyle: hi 11/10/2018 8:03:02 PM
  • ๖ۣۜBossღ: 3:00 AM 11/11/2018 10:17:11 PM
  • quanghungnguyen256: sao wweb cứ đăng nhập mãi nhĩ, k trả lời đc bài viết nữa 11/30/2018 4:35:45 PM
  • quanghungnguyen256: web nát r à 11/30/2018 4:36:19 PM
  • quanghungnguyen256: 11/11/2018 h là 30/11. oi web chắt k ai dùng r hả 11/30/2018 4:36:44 PM
  • quanghungnguyen256: rofum ngon thế mà sao admin lại k nâng cấp nhỡ 11/30/2018 4:37:07 PM
  • nguyenlena2611: talk_to_the_hand 12/24/2018 9:24:22 PM
  • nguyenlena2611: big_grinsurpriseblushing 12/24/2018 9:28:35 PM
  • Việt EL: ^^ 2/16/2019 8:37:21 PM
  • Việt EL: he lô he lô 2/16/2019 8:37:34 PM
  • Việt EL: y sờ e ny guan hiar? 2/16/2019 8:38:15 PM
  • Việt EL: èo 2/16/2019 8:38:32 PM
  • Việt EL: éo có ai 2/16/2019 8:40:48 PM
  • dfgsgsd: Hế lô 2/21/2019 9:52:51 PM
  • dfgsgsd: Lờ ôn lôn huyền ..... 2/21/2019 9:53:01 PM
  • dfgsgsd: Cờ ắc cắc nặng.... 2/21/2019 9:53:08 PM
  • dfgsgsd: Chờ im.... 2/21/2019 9:53:12 PM
  • dfgsgsd: Dờ ai dai sắc ...... 2/21/2019 9:53:23 PM
  • dfgsgsd: ờ ưng nưng sắc.... 2/21/2019 9:53:37 PM
  • dfgsgsd: Mờ inh minh huyền.... đờ ep nặng... trờ ai... quờ a sắc.... đờ i.... 2/21/2019 9:54:11 PM
  • nln: winking 2/28/2019 9:02:14 PM
  • nln: big_grin 2/28/2019 9:02:16 PM
  • nln: smug 2/28/2019 9:02:18 PM
  • nln: talk_to_the_hand 2/28/2019 9:02:20 PM
  • nln: Specialise 2/28/2019 9:51:54 PM
  • nlnl: But they have since become two much-love 2/28/2019 10:03:10 PM
  • dhfh: sad 3/2/2019 9:27:26 PM
  • ๖ۣۜNatsu: allo 3/3/2019 11:39:32 PM
  • ffhfdh: reyeye 3/5/2019 8:53:26 PM
  • ffhfdh: ủuutrr 3/5/2019 8:53:29 PM
  • dgdsgds: ujghjj 3/24/2019 9:12:47 PM
  • ryyty: ghfghgfhfhgfghgfhgffggfhhghfgh 4/9/2019 9:34:48 PM
  • gdfgfd: gfjfjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj 4/14/2019 9:53:38 PM
  • gdfgfd: sadsadsadsadsadsad 4/14/2019 9:59:30 PM
  • fdfddgf: trâm anh 4/17/2019 9:40:50 PM
  • gfjggg: a lot of advice is available for college leavers 5/10/2019 9:32:12 PM
  • linhkim2401: big_hug 7/3/2019 9:35:43 AM
  • ddfhfhdff: could you help me do this job 7/23/2019 10:29:49 PM
  • ddfhfhdff: i don't know how to 7/23/2019 10:30:03 PM
  • ddfhfhdff: Why you are in my life, why 7/23/2019 10:30:21 PM
  • ddfhfhdff: Could you help me do this job? I don't know how to get it start 7/23/2019 10:31:45 PM
  • ddfhfhdff: big_grinwhistling 7/23/2019 10:32:50 PM
  • ddfhfhdff: coukd you help me do this job 7/23/2019 10:39:22 PM
  • ddfhfhdff: i don't know how to get it start 7/23/2019 10:39:38 PM
  • huy31012002:9/13/2019 10:43:52 PM
  • huongpha226: hello 11/29/2019 8:22:41 PM
  • hoangthiennhat29: pig 4/2/2020 9:48:11 PM
  • cutein111: . 4/9/2020 9:23:18 PM
  • cutein111: . 4/9/2020 9:23:19 PM
  • cutein111: . 4/9/2020 9:23:20 PM
  • cutein111: . 4/9/2020 9:23:22 PM
  • cutein111: . 4/9/2020 9:23:23 PM
  • cutein111: hello 4/9/2020 9:23:30 PM
  • cutein111: mấy bạn 4/9/2020 9:23:33 PM
  • cutein111: mấy bạn cần người ... k 4/9/2020 9:23:49 PM
  • cutein111: mik sẽ là... của bạn 4/9/2020 9:23:58 PM
  • cutein111: hihi 4/9/2020 9:24:00 PM
  • cutein111: https://www.youtube.com/watch?v=EgBJmlPo8Xw 4/9/2020 9:24:12 PM
  • nhdanfr: Hello 9/17/2020 8:34:26 PM
  • minhthientran594: hi 11/1/2020 10:32:29 AM
  • giocon123fa: hi mọi ngừi :33 1/31/2021 10:31:56 PM
  • giocon123fa: call_me 1/31/2021 10:32:46 PM
  • giocon123fa: không còn ai nữa à? 1/31/2021 10:36:35 PM
  • giocon123fa: toi phải up cái này lên face để mọi người vào chơilaughing) 1/31/2021 10:42:37 PM
  • manhleduc712: hí ae 2/23/2021 8:51:42 AM
  • vaaa: f 3/27/2021 9:40:49 AM
  • vaaa: fuck 3/27/2021 9:40:57 AM
  • L.lawiet: l 6/4/2021 1:26:16 PM
  • tramvin1: . 6/14/2021 8:48:20 PM
  • dothitam04061986: solo ff ko 7/7/2021 2:47:36 PM
  • dothitam04061986: ai muốn xem ngực e ko ạ 7/7/2021 2:49:36 PM
  • dothitam04061986: e nứng 7/7/2021 2:49:52 PM
  • Phương ^.^: ngủ hết rồi ạ? 7/20/2021 10:16:31 PM
  • ducanh170208: hi 8/15/2021 10:23:19 AM
  • ducanh170208: xin chao mọi người 8/15/2021 10:23:39 AM
  • nguyenkieutrinh: hiu lo m.n 9/14/2021 7:30:55 PM
  • nguyenngocha651: Xin chào tất cả các bạn 9/20/2021 3:13:46 PM
  • nguyenngocha651: Có ai onl ko, Ib với mik 9/20/2021 3:14:08 PM
  • nguyenngocha651: Còn ai on ko ạ 9/20/2021 3:21:34 PM
  • nguyenngocha651: ai 12 tủi, sinh k9 Ib Iw mik nhố 9/21/2021 10:22:38 AM
Đăng nhập để chém gió cùng mọi người
  • dvthuat
  • hoàng anh thọ
  • nhungtt0312
  • Xusint
  • tiendat.tran.79
  • babylove_yourfriend_1996
  • thaonguyenxanh1369
  • hoangthao0794
  • zzzz1410
  • watashitipho
  • HọcTạiNhà
  • Cá Hêu
  • peonycherry
  • phanqk1996
  • giothienxung
  • khoaita567
  • nguyentranthuylinhkt
  • maimatmet
  • minh.mai.td
  • quybalamcam
  • m_internet001
  • bangtuyettrangsocola
  • chizjzj
  • vuivequa052
  • haibanh237
  • sweetmilk1412
  • panhhuu
  • mekebinh
  • Nghịch Thuỷ Hàn
  • Lone star
  • LanguaeofLegend
  • huongduong2603
  • i_love_you_12387
  • a ku
  • heohong_congchua
  • impossitable111
  • khanh
  • ๖ۣۜJinღ๖ۣۜKaido
  • huynhhoangphu.10k7
  • namduong2016
  • vycreepers
  • Bảo Phươngg
  • Yurika Yuki
  • tinysweets98
  • Thùy Trang
  • Hàn Thiên Dii
  • ๖ۣۜConan♥doyleღ
  • LeQuynh
  • thithuan27
  • huhunhh
  • ๖ۣۜDemonღ
  • nguyenxinh6295
  • phuc642003
  • diephuynh2009
  • Lê Giang
  • Han Yoon Min
  • ...
  • thuyvan
  • Mặt Trời Bé
  • DoTri69
  • bac1024578
  • Hạ Vân
  • thuong0122
  • nhakhoahoc43
  • tuanngo.apd
  • Đức Vỹ
  • ๖ۣۜCold
  • Lethu031193
  • salihova.eldara