Trong mặt phẳng ($P$) cho hình vuông $ABCD$ có cạnh bằng $a, S$ là một điểm bất kì nằm trên đường thẳng $At $ vuông góc với mặt phẳng $(P$) tại $A$. $1.$ Tính theo $a$ thể tích hình cầu ngoại tiếp hình chóp $S.ABCD$ khi $SA = 2a$. $2$. $M, N$ lần lượt là hai điểm di động trên các cạnh $CB, CD (M \in CB ;\,\,N \in CD)$ và đặt $CM = m, CN = n$. Tìm một biểu thức liên hệ giữa $m$ và $n$ để các mặt phẳng $(SMA)$ và $(SAN)$ tạo với nhau một góc ${45^0}$
|