Cho Parabol: $y^2= 4x$ $a)$ Chứng minh rằng từ điểm $N$ tùy ý thuộc đường chuẩn của Parabol có thể kẻ được hai tiếp tuyến đến Parabol mà hai tiếp tuyến ấy vuông góc nhau. $b)$ Gọi $T_1; T_2$ lần lượt là hai tiếp điểm của hai tiếp tuyến nói ở câu trên. Chứng minh rằng đường thẳng $T_1,T_2$ luôn đi qua một điểm cố định khi $N$ chạy trên đường chuẩn của Parabol. $c)$ Cho $M$ là một điểm thuộc Parabol ($M$ khác đỉnh của Parabol). Tiếp tuyến tại $M$ của Parabol cắt các trục $Ox, Oy$ lần lượt tại $A, B$. Tìm quỹ tích trung điểm $I$ của $AB$ khi $M$ chạy trên Parabol đã cho.
|