|
$1)\,\,{\log _{0,5}}({9^{x - 1}} + 1) - 2 \ge {\log _{0,5}}({3^{x - 1}} + 7)$ Đặt $t = {3^{x - 1}} > 0$ Bpt $ \Leftrightarrow {\log _{0,5}}({t^2} + 1) > 2 + {\log _{0,5}}(t + 7)\\ \Leftrightarrow \log_{0,5}({t^2} + 1) > {\log _{0,5}}(\frac{{t + 7}}{4})\\ \Leftrightarrow {t^2} + 1 < \frac{{t + 7}}{4}\\ \Leftrightarrow 4{t^2} - t - 3 < 0 \Leftrightarrow 0 < t < 1\\ \Leftrightarrow {3^{x - 1}} < 1 \Rightarrow x < 1 $ $\begin{array}{l} 2)\,\,\sqrt {{x^2} - 2x + 5} + \sqrt {x - 1} = 2\\ \Leftrightarrow \sqrt {{{(x - 1)}^2} + 4} + \sqrt {x - 1} = 2\\ \sqrt {{{(x - 1)}^2} + 4} \ge 2\\ \sqrt {x - 1} \ge 0\\ \Rightarrow VT \ge 2 \end{array}$ Dấu bằng xảy ra khi $x = 1.$
|