Trong mặt phẳng $(P)$ cho tam giác $OAB$, cân tại đỉnh $O,OA=a$ và cạnh đáy $AB=a\sqrt{3} $.Trên các đường thẳng $Ax\bot (P),By\bot (P)$ với $Ax,By$ nằm cùng phía đối với mặt phẳng $(P)$, ta lấy theo thứ tự, hai điểm $M,N$ sao cho $AM=a,BN=\frac{a}{2} $ $a.$ Chứng minh tam giác $OMN$ vuông $b.$ Tính góc hợp bởi mặt phẳng $(OMN),(P)$
|