$1)$cho $2$ hàm số: $f(x) = {2^x} - 1,\,\,\,g(x) = 2x + 1$
Giải : $f\left[ {g(x)} \right] < g\left[ {f(x)} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$
$2)$. cho:$f(x) = 2x + 2,\,\,\,g(x) = 2x + 10$
Giải $f\left[ {g(x)} \right] < g\left[ {f(x)} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)$