Giải phương trình : ${2^{{x^2} + 4}} = {2^{2\left( {{x^2} + 1} \right)}} + \sqrt {{2^{2\left( {{x^2} + 2} \right)}} - {2^{{x^2} + 3}} + 1} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$
|
Giải các phương trình : $\begin{array}{l} 1)\,\,{x^{3 - \lg \frac{x}{3}}} = 900\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3)\,\,{8^{{x^3} - 1}} + {18^{{x^3} - 1}} = {2.27^{{x^3} - 1}}\\ 2)\,\,{49^{\frac{1}{x}}} - {35^{\frac{1}{x}}} = {25^{\frac{1}{x}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4)\,\,{4.3^x} - {9.2^x} = {5.6^{\frac{x}{2}}} \end{array}$
|
|
Giải các phương trình : $\begin{array}{l} 1)\,\,{5^{3x}} + {9.5^x} + 27\left( {{5^{ - 3x}} + {5^{ - x}}} \right) = 64\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,{2^{3x}} - \frac{8}{{{2^{3x}}}} - 6\left( {{2^x} - \frac{1}{{{2^{x - 1}}}}} \right) = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
|
|
|
|
|
Giải các phương trình : $\begin{array}{l} 1)\,{\left( {\frac{1}{4}} \right)^{x - 2}} = {2^{5 - x}} + 9\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3)\,{\left( {\frac{1}{6}} \right)^{x - 3}} = {6^{5 - 2x}} - 12\\ 2)\,\frac{3}{{{2^{3 - x}}}} = {4^{x - 4}} - 7\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4)\,{5^{2x - 3}} = \frac{2}{{{5^{1 - x}}}} + 15 \end{array}$
|
Giải các phương trình : $\begin{array}{l} 1)\,{5^{\left| {4x - 6} \right|}} = {25^{3x - 4}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,{3^{\left| {3x - 4} \right|}} = {9^{2x - 2}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
|
|
|
|
Giải phương trình : ${5^x}{.8^{\frac{{x - 1}}{x}}} = 500\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$
|
Giải các phương trình : $\begin{array}{l} 1){9^{{x^2} - 1}} - {36.3^{{x^2} - 3}} +3= 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3)\,{4^{x + \sqrt {{x^2} - 2} }} - {5.2^{x - 1 + \sqrt {{x^2} - 2} }} = 6\\ 2)\,{\left( {\sqrt[5]{3}} \right)^x} + {\left( {\sqrt[{10}]{3}} \right)^{x - 10}} - 84 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4)\,{2.4^{ - \frac{1}{x}}} - {6^{ - \frac{1}{x}}} = {3.9^{ - \frac{1}{x}}} \end{array}$
|
Giải các phương trình : $\begin{array}{l} 1)\,\,\,{4^{{{\log }_9}x}} - {6.2^{{{\log }_9}x}} + {2^{{{\log }_3}27}} = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,{4^{{{\log }_3}x}} - {5.2^{{{\log }_3}x}} + {2^{{{\log }_3}9}} = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
|
|
|
|
|
Giải các phương trình : $\begin{array}{l} 1)\,\,{3^{x - 5}} = 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3)\,{9^x} - {2^{x + \frac{3}{2}}} = {2^{x + \frac{1}{2}}} - {3^{2x - 1}}\\ 2)\,\,{3^{4 - 2x}} = {9^{5 - 3x - {x^2}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4)\,{7^{3x}} + {9.5^{2x}} = {5^{2x}} + {9.7^{3x}} \end{array}$
|
Giải các phương trình : $\begin{array}{l} 1)\,\,{2^{x + 2}}{.5^{x + 2}} = {2^{3x}}{.5^{3x}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3)\,\,{3^{2x + 3}}{.5^{2x + 3}} = {3^{5x}}{.5^{5x}}\\ 2)\,\,{3^{x + 3}}{.7^{x + 3}} = {3^{2x}}{.7^{2x}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, 4)\,{2^{x + 4}}{.7^{x + 4}} = {2^{3x}}{.7^{3x}} \end{array}$
|
Giải các phương trình : $\begin{array}{l} 1)\,{\left[ {{{\left( {{2^{\sqrt x + 5}}} \right)}^{\frac{1}{{5\sqrt x + 1}}}}} \right]^{\frac{1}{{\sqrt x }}}} = \frac{1}{2}{.4^{\sqrt x }}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,{2^{{{\log }_8}\left( {{x^2} - 6x + 9} \right)}} = {3^{2{{\log }_x}\sqrt x - 1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
|
Giải các phương trình : $\begin{array}{l} 1)\,\,{3^{2 + x}} + {3^{2 - x}} = 30\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3)\,\,{25^x} - {23.5^x} - 5 = 0\\ 2)\,{4^x} + {3.2^x} - 10 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4)\,\,{3^{2\left( {x + 1} \right)}} - {82.3^x} + 9 = 0 \end{array}$
|
Giải các phương trình : $\begin{array}{l} 1){2^x} = 128\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, 4)\,{25^x} - {6.5^{x + 1}} + {5^3} = 0\\ 2){3^{x - 1}} = \frac{1}{{729}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,5)\,{9^x} + {5.3^x} + 7 = 0\,\\ 3){4^x} + {2^x} - 6 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,6)\,{9^x} - {25.3^x} - 54 = 0 \end{array}$
|
|
|
Đăng bài 24-04-12 11:32 AM
|
|
|
|
|
|
Đăng bài 24-04-12 10:14 AM
|
|
Đăng bài 24-04-12 09:14 AM
|
|
Đăng bài 23-04-12 04:55 PM
|
Đăng bài 23-04-12 04:38 PM
|
Đăng bài 23-04-12 04:06 PM
|