Giải các phương trình: $a) log_3(x+1) + log_5(2x+1) = 2\,\,\,\,\,(1)$ $b) x+ log(x^2 – x – 6) = 4+ log(x +2) \,\,\,\,(2) $ $c) {{2}^{{lo}{{g}_{5}(x + 3)}}}{ = x}\,\,\,\,\,\,\,\,(3)$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Giải phương trình : $8 - x{.2^x} + {2^{3 - x}} - x = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$
|
Giải phương trình : ${2^{x + 1}} - {4^x} = x - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$
|
Mỗi phương trình sau đây có bao nhiêu nghiệm: $\begin{array}{l} 1)\,\,{\left( {\frac{1}{3}} \right)^x} = 2x + 1\,\,\,\,\,\,\,\,\,\,\,(1)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3)\,{4^x} = x - 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(3)\\ 2)\,{3^x} = x + 5\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
|
Giải các phương trình : $\begin{array}{l} 1,{2^x} + x - 3 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2){3^x} + {4^x} + {12^x} = {13^x}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
|
Giải các phương trình sau đây: $\begin{array}{l} 1)\,\,{3^x} + {4^x} = {5^x}\,\,\,\,\,\,\,\,(1)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4)\,\,\,{3^x} + {4^x} + {5^x}\, = {10^x}\,\,\,\,\,\,\,\,\,\,\,\,(4)\\ 2)\,{2^x} + {3^x} = {5^x}\,\,\,\,\,\,\,\,(2)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,5)\,\,\,\lg \left( {x - 4} \right) = 5 - x\,\,\,\,\,\,\,\,\,\,\,\,\,\,(5)\\ 3)\,{5^x} + {12^x} = {13^x}\,\,\,\,(3) \end{array}$
|
Đăng bài 07-05-12 03:22 PM
|
|
|
|
|
|
|
|
Giải phương trình : ${8.3^{\sqrt x + \sqrt[4]{x}}} + {9.^{\sqrt[4]{x} + 1}} = {9^{\sqrt x }}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)$
|
Giải các phương trình: $\begin{array}{l} 1)\,{3.2^{\frac{{x - 1}}{{x + 1}}}} - {8.2^{\frac{{\sqrt x - 1}}{2} }
+ 4 } = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,{81^x} - {16^x} - 2\left( {{9^x} - {4^x}} \right) + {36^x} = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
|
|
|
Giải phương trình : ${2^{{x^2} + 4}} = {2^{2\left( {{x^2} + 1} \right)}} + \sqrt {{2^{2\left( {{x^2} + 2} \right)}} - {2^{{x^2} + 3}} + 1} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$
|
Giải các phương trình : $\begin{array}{l} 1)\,\,{x^{3 - \log \frac{x}{3}}} = 900\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \,\,\,3)\,\,{8^{{x^3} - 1}} + {18^{{x^3} - 1}} = {2.27^{{x^3} - 1}}\\ 2)\,\,{49^{\frac{1}{x}}} - {35^{\frac{1}{x}}} = {25^{\frac{1}{x}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4)\,\,{4.3^x} - {9.2^x} = {5.6^{\frac{x}{2}}} \end{array}$
|
Giải các phương trình : $\begin{array}{l} 1)\,{\left[ {{{\left( {{2^{\sqrt x + 5}}} \right)}^{\frac{1}{{5\sqrt x + 1}}}}} \right]^{\frac{1}{{\sqrt x }}}} = \frac{1}{2}{.4^{\sqrt x }}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,{2^{{{\log }_8}\left( {{x^2} - 6x + 9} \right)}} = {3^{2{{\log }_x}\sqrt x - 1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\ ,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)\end{array}$
|
Giải các phương trình: $\begin{array}{l} 1)\,\,{3^{2 + x}} + {3^{2 - x}} = 30\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3)\,\,{25^x} - {23.5^x} - 5 = 0\\ 2)\,{4^x} + {3.2^x} - 10 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4)\,\,{3^{2\left( {x + 1} \right)}} - {82.3^x} + 9 = 0 \end{array}$
|
|